3 [0 DIFFERENTIATION RULES

3.1 Derivatives of Polynomials and Exponential Functions

1. (a) e is the number such that }{13}) ¢ 1 =1
(b)
z (2.7 -1)/x z (2.8°—1)/z
—0.001 0.9928 —0.001 1.0291
—0.0001 0.9932 —0.0001 1.0296
0.001 0.9937 0.001 1.0301
0.0001 0.9933 0.0001 1.0297
From the tables (to two decimal places), il_r’no 2 f;l_ ! = 0.99 and ;PEB 28" 1 = 1.03. Since
099 <1<1.0327<e<?28.
2. (a) (b) f(x) = € is an exponential function and g(z) =z°isa

. power function. d—dz () = €” and % (z°) = ex

(¢) f(x) = e” grows more rapidly than g(x) = z° when z is

large.

-2 -1 0 | 2 x

The function value at z = 0 is 1 and

the slope at z = 0 is 1.
3. f(z) = 186.5 is a constant function, so its derivative is 0. that is. f'(z) = 0.
4. f(z) = /30 is a constant function, so its derivative is 0, that is, f'(z) = 0.
5. f()=52-1 = fl(z)=5-0=5
b. F(z) = —4z'° = F'(z)= —4(102'° 1) = —40z°
1. f(@)=2"+3c-4 = f(2)=222"143-0=2043
8.9(z)=52"-22°+6 = g'(z)=5(82""") - 2(52°71) + 0 = 402" — 10z*
L fM) =3 +8) = f(t)=1(t* +8) = L(ar*~1 4 0) =3
10. f(t) = 38° = 3t* +¢t = f(t) = 3(6t°) = 3(4t%) +1=3¢° — 1263 + 1

M. y=—2/5 P = _2p(-2/8)-1 _ _2_—775 _ 2
y==x = y sz £z =5

122y =5e"+3 = ¢ =5(e”) + 0 = 5e*
13.V(r) = 37r1"3 = V'(r)= %77(37'2) = 47r?

W R(t)=5t7%° = R(t)= 5[~§t(’3/5) - 1} = —3t78/5
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15.Y@t) =6t = Y'(t)=6(-9)t "0 =541

16. R(z) = %—{6 =10z~ = R(z)=-TV10z %= _7\/1_0

8
17. G(z) = Va — 2" =2/? — 2" = G'(z) = 7Y%~ 2" =

1
32/3

18.y:\3/E::1:1/3 = 1,.-2/3 —

19 F@) = (G0 = (3)°2° = a° = F(o) = $(5") = o

1
2. f(t)=t- i /2 4712 o () = L2 - (—%t—3/2) = 5% + ﬁ

2 o g(z)=2z+(-2)z7% =2z - 2

1
_ .2 2 -
M. g(z)==2 +—$2#m +z p

2y Ea-1) =¥ —a/ = yf = Ja e = fe (s 1) (factorout o)

or 3z -1

=37

2

P R VL BTN P
NG
_ _ 2 3

= g g D = 1 E -
[note that z%/% = /% . —:c\/_]

2——
24.y:$——x2ﬁ=m—2m_1/2 = y'=1—2(—%)m_3/2=1+1/(m\/5)
%5, y=4r® = <y =0since 4" is a constant.
2. g(u) = Viu+vEi= VIut VEVE = g(w)=vE(D)+VE(3uT?) = V2 VB2 V)

2. y=az*+br+c = y =2az+b

b 2
28.y=ae"+é—§—%:ae”—!—bv_l-i-cv'2 = y’:ae”—bv”2—2cv‘3=ae”——5——5
v v v
29 v t? =2 ¥ o =2 ()T =24 o S ot —=
) 443 4¢7/4 1t 3

2
0. u=VE+2VE =287 = u’:%t‘1/3+2(§)t1/2:3 +3V1t

A

:'11.z:y0

10
4 Be¥ = Ay 1° + Be? = 2/ =-104y "' +Be’ = o + BeY

32.y:ez+1+1:ezel+1:e'e’”+1 = y =e-€e"=¢€
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B. f(x)=e"-5z = f'(z)=€"—5.

5

f
\. J J
=5
Notice that f'(z) = 0 when f has a horizontal

tangent, f' is positive when f is increasing. and f’

is negative when f is decreasing.

3. f(z) =3z —-52° +3 =
f'(z) = 452" — 1522

—12H+-

Notice that f'(z) = 0 when f has a horizontal
tangent, f is positive when f is increasing, and f’

is negative when f is decreasing.
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34. f(z) = 32° — 202° + 50z =
f'(z) = 152* — 60z + 50.

Notice that f'(z) = 0 when f has a horizontal
tangent and that f is an even function while fisan

odd function.

6. fz)=z+1/z=z+2"! =
flley=1-2"%2=1-1/2%

6
A
i f
Py N e
f
)
-6

Notice that f'(z) = 0 when f has a horizontal
tangent, f" is positive when f is increasing, and f

is negative when f is decreasing.

31. To graphically estimate the value of F'(1) for f(z) = 32% — 23, we'll graph f in the viewing rectangle
(1 -0.1,1+0.1) by [£(0.9), f(1.1)], as shown in the figure. [When assigning values to the window variables, it is

convenient to use Y1(0.9) for Yumin and Y; (1.1) for Y

max-] If we have sufficiently zoomed in on the graph of f, we

should obtain a graph that looks like a diagonal line: if not, graph again with 1 — 0.01 and 1 + 0.01, etc.

Estimated value:
2.299 — 1.701 0.589
"(1) =~ =
Fa) 1.1-09 0.2

Exact value: f(r) = 322 — 23
so f'(1) =6 —3=3.

= 2.99.

2.299

= f(z) = 6z — 322,

0.9 1.1
1.701

38. See the previous exercise. Since [ is a decreasing function, assign Y1(3.9) t0 Yimax and Y; (4.1) to Yomin.

Estimated value: f'(4) ~ 0.49386 — 0.50637 _ —0.01251

4.1-39

02 = —0.06255.

Exactvalue: f(z) =27 = f/(z) = —1273/2 50 f'(4) = —3(47%%) = —4(1) = -1 = _0.0625.
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39y =z +2° = o =4z +2€e" At(0,2),y = 2 and an equation of the tangent line is y — 2 = 2(z — 0)

ory =2z + 2.

4. y=(1+2x)°=1+4z+ 422 = o =4+8z At(1,9),y’ = 12 and an equation of the tangent line is
y—9=12(z - 1)ory = 12z - 3.

M.y=32%—2° = y =62—32" At(1,2).y =6-3=3. 5
\
50 an equation of the tangent line isy — 2 = 3(z — 1).
ory =3z — 1.
-2 4
\ \g
-1
02 y=—zyz=1> = y =3z At(438), 12
y' = 2(2) = 3, so an equation of the tangent line is
y—8=23(z—4),ory =3z —4
6
0
43. (a) 50 (b) y
, S 201
- r ~ J — p + + +
-10 —2/ —20T \2/ '

From the graph in part (a), it appears that f' is zero at
z, ~ —1.25 x2 ~ 0.5, and z3 =~ 3. The slopes are negative (s0

' is negative) on (—oo, 1) and (z2, x3). The slopes are positive

(so f' is positive) on (z1,z2) and (23, 00).

© f(z) =z* —32* —62° + Tz +30 = 100
f'(z) = 4z — 92® — 12z + 7

P

R

\/JS

~40




44, (a) 8 (b) y

45,

46.

47.

49.
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-8
From the graph in part (a), it appears that f' is zero at z; ~ 0.2
and zz &~ 2.8. The slopes are positive (so f’ is positive) on
(=00, 21) and (22, 00). The slopes are negative (so f is
negative) on (z1, z2).
©) g(z) =€ -32> = g'(z)=¢€" -6z 8

R \\/ 4

-8

The curve y = 2z° + 322 — 12z + 1 has a horizontal tangent when y’ = 622 + 6z — 12 =0 <«
6(z°+z-2)=0 < 6(z+2)(r-1)=0 & z=-2o0rz=1. The points on the curve are (—2,21)
and (1, —6).

f(x) = 2* 4+ 322 + = + 3 has a horizontal tangent when f'(z) = 322 + 62+ 1 =0 <
g — —6EV36-12 \/636—12 =14 1V6

y=62>+5z—-3 = m =1y = 18z2 + 5. but 2 2> O for all . som > 5 for all z.

- The slope of y = 1 4 2™ — 3z is given by m = ¢/ = 2¢% — 3. y=1+2e"—3x 6

The slope of 3z —y =5 <« y=3x—5is 3. ( A
m=3 = 2°-3=3 = =3 = z=1In3. This
occurs at the point (In3,7 — 31n3) ~ (1.1,3.7).

-3

/A

N
y=3x+7-6In3" -1 y=3x-5
y Let (a.a?) be a point on the parabola at which the tangent line passes
(@) through the point (0, —4). The tangent line has slope 2a and equation
= y—(-4)=2a(z-0) & y=2az— 4. Since (a, a2) also lies on
5 > the line, a® = 2a(a) — 4,0ra2 = 4. So q = +2 and the points are (2, 4)
o -0 and (—2,4).
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50. If y = 2 + . then ¢/ = 2z + 1. If the point at which a tangent meets the parabola is (a,a® + a), then the slope of

2
the tangent is 2a + 1. But since it passes through (2, —3). the slope must also be % = a_ﬁ_—a_;—ﬁl
z a—

2
3 . . .
Therefore, 2a + 1 = a__—i—a_;—_. Solving this equation for a we get a?+a+3=2a%-3a-2 &

a®—4a-5=(a—5)(a+1)=0 <« a=>5o0r—1 Ifa= —1. thepointis (—1,0) and the slope is —1, so the
equationisy — 0 = (—1)(z + 1) ory = —z — 1. If a = 5. the point is (5, 30) and the slope is 11, so the equation

isy —30=11(z —5) ory = 11z — 25.

Bl.y=f(z)=1—a°> = f'(z) = —2x.so the tangent line at (2, —3) has %v= -

slope f/(2) = —4. The normal line has slope —=; = 7 and equation 0 x
_1 _1. 1

y+3=g(r—2ory=3z— 3. a3

5.y=f(z)=z—a° = f(z)=1-2z Sof'(1)=—1,andtheslope of the normal line is the negative

reciprocal of that of the tangent line, that is, =1/ (=1) = 1. So the equation of the normal line at (1,0) is

y-0=1z-1) & y=z-1L Substituting this into the equation of the parabola, we obtainz — 1 = z — z°

& g = +1. The solution = —1 is the one we require. Substituting z = —1 into the equation of the parabola to
find the y-coordinate, we have y = —2. So the point of intersection is (—1,—2), as shown in the sketch.
y
I
0 1 X
11
_ f@+h)—f@) . zth =z _ o c-(@th)
! = = = l —_—
B (@) =l T BT T A ha(e )
-1 1
=702

= lim ———— = lim ———=
hm hxz(x + h) ) x(z + h) x
54. Substitutingz = landy = lintoy = ax? + bz givesus a + b =1 (1). The slope of the tangent line y = 3z — 2
is 3 and the slope of the tangent to the parabola at (z, y)isy =2azx+b Atz =1, y =3 = 3=2a+b®.

Subtracting (1) from (2) givesus 2 = a and it follows that b = —1. The parabola has equation y = 2z? — .



SECTION 3.1  DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS O 157

5. f(x) =2—zifz <land f(z) = 2% — 2z +2if z > 1. Now we compute the right- and left-hand derivatives

defined in Exercise 2.9.46:

JO+R) —fQ) _ 2= (4R) -1  —h
’ _ =1 =1 — = 1 —1=—1and
FO= 0 = W T
fA+h)—fQ) . (1+h)2-201+h)+2-1 im %~ i h—o
fi(1) = lim, h = lm, h T hmot b heor
Thus, f'(1) does not exist since f’ (1) # f4(1). ¥ y
so f is not differentiable at 1. But f'(z) = —1 f by
forz < land f'(z) =2z — 2ifz > 1.
(1.1 o *
0 x —
-1-2z ifx<-1
. g(z) = { 22 if -1<z<1
z ifz>1
lim 9=l +h) —g(=1) = lim [f1-2(14h)] -1 = lim —2h _ lim (—2) = —2and
h—0— h h—0- h h—0— h h—0—
_ o 1 2 _ _ 2
i SLEN gD o (AERP-1 sk R (—2+h) = 2,
h—0+ h h—0+ h h—0+ h h—0+
so0 g is differentiable at —1 and g’ (—1 ) =-2
_ 2
lim 21 —9() _ (1) = tim 2 24 k) = 2and
h—0- h h_.o— h—0—  h h—0~
i 9 —g(1) (1)-1_ i P i
hl_l.%l+ T = hl_1'1(1)1+ = hl_l'r(rler n= hl_l)lgl 1 =1.s0g'(1) does not exist.
Thus, g is differentiable except when z = 1, and y y=g(x) y
-2 ifz<-1
! 2z if —1< 1 1 1
9 (z) = z if -1<z< y=g'x)
1 ifx>1 I ' > _'1 0 1 >
-1 -1

57. (a) Note that 2 —9 < Oforz? <9 « |z/<3 « -3<z<3. So

z2 -9 if £ < -3
flx)y=¢ -2 +9 if 3<z<3 =

z2 -9 if £>3

2x if £ < -3
fl@y={ -2z if 3<z<3

{2x if |z| >3
2z if >3

2 if |z| <3

To show that f’(3) does not exist we investigate hm w by computing the left- and right-hand

derivatives defined in Exercise 2.9.46.
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. 3+h)—f(3 . —(3+h)? -
fL(3) = lim fB+R =16 _ lim [CG+h) +91-0_ lim (-6 —h) = —6 and
h—0 h—0~ h h—0—
. 3+h)—f(3) . [B+h?-91-0 6h 4 h?

L(3) = lim B+ = fB) _ 1 = li =
1+G3) h—0+ h hl»n(;l+ h hll%]+ h - hl—l»rg+ (6+h)=6
Since the left and right limits are different. (b) y y /

_ f3+h)— 7 ’
lim f—(L)—f—(?))- does not exist, that is, f
h—0 h
£'(3) does not exist. Similarly. f'(—3) does not ) e >

-3 3
exist. Therefore, f is not differentiable at 3 or
at —3. /
-3 0 3 x

5. Ifz > 1.thenh(z) = [z — 1|+ |z +2|=2z—-1+z+2=22+1

59.

61.

If-2<z<1thenh(z)=—(x—1)+z+2=3.
If z < —2.then h(z) = —(z — 1) — (z + 2) = —2z — 1. Therefore,
—2x—-1 ifx<-2
h(z) =< 3 if 2<z<1 =
2x + 1 ifx>1

if < —2
if —2<z<1
if x>1

To see that h'(1) = lim hlz) = h{1) does not exist,

-2
K (x) = { 0
2
z—1 Y Y
observe that lim M = lim g__?l’ — 0 but ) y=h'(x)

z—1" r—1 z—1" -
= h(x) —_———t—o————>
h(z) — h - Y
fim @ ZPA) o 2222 imilary, —2 01 *
z—1t r—1 z—1+t T — 0 + —> o
_2 1 X

h'(—2) does not exist.

y=f(z) = az® = f'(z) = 2az. So the slope of the tangent to the parabola at z = 2 is m = 2a(2) = 4a. The
slope of the given line. 2z +y =b & y= —92 + b, is seen to be —2, so we must have 4a = -2 &

a = —1. So when z = 2, the point in question has y-coordinate —1 - 22 = —2. Now we simply require that the
given line, whose equation is 2z + y = b, pass through the point (2,-2): 2(2) +(-2) =b < b=2.Sowe

must have a = —% and b = 2.

. f is clearly differentiable for z < 2 and for z > 2. Forz < 2, f'(z) = 2z, s0 fL(2) = 4. Forz > 2, f'(z) =m.

50 f(2) = m. For f to be differentiable at z = 2, we need 4 = f.(2) = fi(2) = m. So f(z) = 4z + b. We
must also have continuity at ¢ = 2,s04 = f(2) = lim+ f(z) = lim+(4:v +b) = 8 + b. Hence, b = —4.
T—2 T—2

y = f(z) = az® +bel+cx+d = f'(x)=3az®+ 2bz + c. The point (—2,6)ison f.so f(-=2) =6 =
_8a+4b—2c+d = 6 (1). The point (2,0) ison f,s0 f(2) =0 = 8a + 4b + 2¢ + d = 0 (2). Since there are
horizontal tangents at (—2,6) and (2,0), f'(£2) = 0. f(=2)=0 = 12a—4b+c=0(@3)and

f'(2)=0 = 12a+4b+c=04). Subtracting equation (3) from (4) gives8b =0 = b = 0. Adding (1)
and (2) gives 8b + 2d = 6. so d = 3 since b = 0. From (3) we have ¢ = —12a. so (2) becomes

8a +4(0) +2(-12a) +3=0 = 3=16a = a= 3 Nowc = —12a = —12(55) = —7 and the desired

cubic functionis y = &2° — §z + 3.
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. c L
62 zy=c = y= € LetP = (a‘ E). The slope of the tangent line at z = a is y/(a) = —— . Its equation is
z a a
c c c 2c . . . 2c . .
——=—-——(z - Y = —— —, S0 1ts y-intercept is —. Setting y = 0 gives x = 2a, so the
y-- 2@—a)ory 25T y pis — gy=0¢g

0, 2—c> and (2a,0) is (a, g) =P

z-intercept is 2a. The midpoint of the line segment joining < A

(b) We know the z- and y-intercepts of the tangent line from part (a). so the area of the triangle bounded by the axes
and the tangent is 1 (base)(height) = 32y = 1(2a)(2c/a) = 2c. a constant.

63. Solution 1: Let f(z) = z'°°°. Then, by the definition of a derivative.

1000
(1) = lim f(@) = /(1) = lim Z - But this is just the limit we want to find, and we know (from the
T—1 r—1 z—1 I —
1000 _ 4
Power Rule) that f'(x) = 10002°%, so (1) = 1000(1)*°° = 1000. So lim ——— = 1000.

Solution 2: Note that (z'%° — 1) = (z — 1)(2°° + 2% + 2997 4 ... L 22 4 7 4 1). So

T -1 (@D % 42 4 a? g 41)
lim = lim
z—1 T — z—1 T — 1

. 9 98 | 997
= lim (:cg 4298 g

z—1

toot 2tz ) =14 1414+ 14141

1000 ones
= 1000, as above.

64. In order for the two tangents to intersect on the y-axis, the points of tangency
must be at equal distances from the y-axis, since the parabola y = 22 is

symmetric about the y-axis. Say the points of tangency are (a, a2) and

(—a, az). for some a > 0. Then since the derivative of y = 2% is dy/dx = 2z,

the left-hand tangent has slope —2a and equation y—a®=—2a(z + a), or

y = —2az — a?. and similarly the right-hand tangent line has equation
y—a® =2a(z — a), ory = 2az — a2. So the two lines intersect at (0, —a®). Now if the lines are perpendicular.

then the product of their slopes is —1, so (—2a)(2a) = -1 & qo®= 3 & a= 1. So the lines intersect
at (0, —1).

3.2 The Product and Quotient Rules

1. Product Rule: y = (x2 + l) (w3 + 1) =

/

Y = (@ +1)(32%) + (2° +1)(22) = 32* + 322 + 22% + 22 — 52 4+ 302 + 2z.
Multiplying first: y = (z* + 1) (2® + )=2"+2*+224+1 = y =52 +322 422 (equivalent).
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z—3zyz x— 3z

2. Quotient Rule: F(z) = = =
\/E zl/2
1/2 9..1/2 3/2 —1/2
) m/(lfaw/>—(z—3m/)(%z />
F(m): (xl/2)2
B z'/? — %w— %xlﬂ =+ %m _ %xl/z -3 1,12 _ 3
B T B T T2

f;j_;ﬁ:ﬁ_g,m:x

For this problem, simplifying first seems to be the better method.

Simplifying first: F(z) = -3z = Fl(z)=3 z~1/% — 3 (equivalent).

@ d

3. By the Product Rule. f(z) = z°¢* = f'(z)= z? — (e”) +e” e («®) = z2e® 4 e”(2z) = ze”(z + 2).

4. By the Product Rule. g(z) = vz e® = /%" = g'(z)=z*(") te (1 —1/2) = %m_1/261(2x +1).

x

5. By the Quotient Rule, y = —:}—2 =

d d
2 T x 2
L Gttt Gl O Rt ) o ) W )
y (:r:2)2 4 4 3
] 1 —e®(1 x z Lz z
6. By the Quotient Rule, y = = = y = (Ltz)e” —ef(l) e'tze —e _ _2¢

l+z (1+x)° (z+1)? (z+1)*

The notations 28 and & indicate the use of the Product and Quotient Rules, respectively.

3z — 1 , 2z +1)3) - (Be—1)(2) 6z+3-6z+2 5
1ol =gy ¢ YW@= - (2 + 1) ST @+ 1)? | (2z+1)2
9%k . (AFE)@ -t s+ —d4® 828

B i) =3 ~ FO= (4+12)? (a+8)?  @+e2)’

9. V(z) = (22° +3)(a" — 20) =

V/(z) = (22° + 3)(4a® — 2) + (¢* — 22)(62”) = (82° + 82° — 6) + (62° — 122°) = 142° — 4z — 6

10. V(u) = (u™? +u ) (u® - 2u?) %

Y'(u) = (u?+ u ) (5ut — 4u) + (u® — 2u?)(—2u~® — 3u™?)

— (5u? — du~" + 5u — du”?) + (—2u® — Bu+ du~t + 6u~?) = 3u? 4 2u +2u?

1. Fly) = (55 - ) y+5y%) = (¥~ 2 _3y™%) (y +5¢°) %
=(y~ 3y‘4)(1 +159°) + (y+59°) (27> + 12y7°)

= (y"2+15—3y~" — 45y~ )4 (—2y 2412yt - 10+ 60y~2)
— 54 14y~ 2+ 9y~ * or 5+ 14/y +9/y*
12 R(t) = (t+e)3 - Vi) =
R(t) = (t+e) (=3t + (3-vE) (1+¢€)
= (—%tl/2 - %t_l/Qet) + (343" —Vi- Viet) =3+3e" — 3Vt—tet — et/(2Vt)
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_ t2 QR
YT ot

o (3 =264+ 1)(2t) —£2(6t —2)  2t[3t2 — 2t + 1 — 1(3¢ — 1)]

B (3t2 — 2t +1)° B (3t2 — 2t +1)°
203t -2 +1-3+¢)  2(1-1)
(3t2 — 2t +1)? C(3t2 -2t +1)?

B4t @ J = (t* =2) (32 +1) — (3 +¢t) (4¢%) _ (3% + 1t -6t —2) — (4° +4t?)

YT E (t — 2)2 (t* —2)°
—t°—3t' —6° -2 543ty 61242
(t* - 2)? - (14 -2)

Ly = (r? —2r)e” B y= (r* —2r)(e") +e"(2r —2) = e (r* —2r +2r — 2) =e"(r’ - 2)

1 R, (s4+ke’)0) — (1)(1 + ke®) _ 1+ ke’
M (s + her)? T (ke

3_
R UV SN S S VRN y’:211—2(%)1)_1/2:211—11_1/2-

v
_ o1 221

We can change the form of the answer as follows: 2v — v~ /2 = 9y — —

\/_ Vv Vv
2= w2 (w4 ce?) = w¥? + w2 =
2 = Suw? +c(w3/2 e¥ +e¥. %wl/z) = 3w¥? + few'/2e® (2w + 3)
B 1 Loy (z* +2° +1)(0) — 1 (42® + 22) _ 2z(22° + 1)
IR v= (z* + 22 4+1)° (et a4 1)
Vz -1
Ly = =
v vz +1
1 1 1 1
1 — (V-1 = .
P (5z) - )<2ﬁ> tTETiItTE
. =
(Vz+1) Vz+1)° vz (VI +1)°
z
- f(@) = z+c/z
) = (@ +c/z)(1) - z(1 - c/z?) :1:+c/x—w+c/:c __ 2/ 2 2
(:c+ 2)2 <:v +c> (zz—f-c)2 (22 +c)?
z : B
ar+b , (cz +d)(a) — (az + b)(c) _ acx +ad — acx — be ad — bc
. = = = —
f(@) cx+d F@) (cz + d)? (cx + d)? (cx + d)?
% (z +1)(2) - (22)(1) 2 . _
V=g Yy = @+ 172 = N At (1,1), % = 1. and an equation of the tangent line

isy-l:%(z-l),ory:%m—k%.

= \/E - yl_("E“}—l)( \/—> \/5(1):(:B+1)—(2.’E): 1—2 (404)
z+1 (z+1)2 2vz(z+1)2 2z (z+1)2

y = T3 = —0.03, and an equation of the tangent line is y — 0.4 = —0.03(z — 4),ory = —0.03z + 0.52.
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B.oy=2ze® = y =2z e+ 1)=2e"(z+1). At(0,0).y' = 2¢°(0+1)=2-1-1=2 andan
equation of the tangent line is y — 0 = 2(z — 0). ory = 2.

ez . T x . 1 x _ 1
26. y = = = 9 = r-e w2€ = ¢ (3;2 ) At (1,e),y" = 0, and an equation of the tangent line is
y—e=0(x—-1).ory=ce
1
1+2°)(0) — 1(2x) -2z
"z :( = . So the slope of the
f'(=) (1 + z2)? (1 + 22)? P (-1.05)
. 2
tangent line at the point (—1,3) is f/(~1) = — = 3 and its —4 4
= C ]
equationisy — 2 = 3(z+1)ory = lz+1. -05
2
x
28. () y = f(z) = m (b) 0.75
1+z3)1 -z (2 —z? 3.03
fl(z) = ( ) 32:( ) - I 5 So the slope of the 0¥
(1+2?) (1+22)
-2 5
tangent line at the point (3,0.3) is f'(3) = 1'—085 and its equation is J
y—0.3 = —-0.08(z — 3) ory = —0.08z + 0.54. o
et b z3(e”) — €” (3m2) B z?e®(z —3)  €(x—3)
Bwiw=5 » (@)= = =
(b) 5 : f' = 0 when f has a horizontal tangent line, f' is negative when
%\‘ f is decreasing, and f’ is positive when f is increasing.
\ f
M
-3 7
7
!
-3
2 2
(®-1)1-2(2z) —z°-1
B = = ! = =
30 (a) f(fl?) 72 — f (:E) (1}2 _ 1)2 (mz _ 1)2
5 Notice that the slopes of all tangents to f are negative and

(b)
l u f'(z) < 0 always.
\ s
-3 Sl 3
\ £
s
-5

31. We are given that f(5) = 1. f'(5) = 6, g(5) = —3. and g () =2
@ (f9)'(5) = £(5)g'(5) + g(5)f'(5) = (1)(2) + (=3)(6) =2 ~ 18 = —16
Y oo 9B)f'(5) = f(5)g'(B) _ (=3)(6) —(1)(2) _ 20
o(f) o= Gr T o 9

0\ e FEWE) —gBE) _ 1) =36
© (f) (6= ) (1) 20
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32. We are given that f(3) =4, g(3) = 2. f/(3) = —6.and ¢'(3) = 5.

@ (f+9)B)=fB)+gdB)=-6+5=—
b) (f9)' (3) = F(3)g'(3) + 9(3)f'(3) = (4 )(5) +(2)(-6) =20-12=38

f 9B'(3) - FB)Y'(3) _ ((=6) - (4)(5) _ 32 _
© (g) ®) = POk - 2)? -7 =8
Y @) = 9B G) = FB)F(3) - g (3)]
@ <f—g> ®) F3) 93P
_A-2(6) —4(-6-5) 12444 _
B (4 —2)2 S22 T

B f(z) =e"g(z) = f'(z) =e"g'(z) +g(x)e” = e [¢'(z) + g()).
e’ [g'(0) +g(0)]) =1(5+2) =7

d [h(z)] _ ah'(z) - h(z) 1 d [hz)] _2M(@)-h(2) _2-3)-(4) -10
3"-—[ J_T = E{T]_z_ e

-2.5

35. (a) From the graphs of f and g, we obtain the following values: f(1) = 2 since the point (1,2) is on the graph of f;

3. () P(z) = F(2)G(z). 50 P'(2) = F(2)G'(2) + G(2)F'(2) = 3 - 2+2.0=2.

g(1) = 1 since the point (1, 1) is on the graph of g: f'(1) = 2 since the slope of the line segment between (0,0)

and (2,4) is ;1 :8 = 2:¢'(1) = —1 since the slope of the line segment between (—2,4) and (2,0)

= —1.Now u(z) = f(z)g(2). s0'(1) = f(1)g'(1) + (1) f'(1) = 2 (~1) +1-2 = 0.

is 0—4
- (-2)

' 5)f(5) — f(5)g'(5 2(-=1)y_-3.2 _&8 9
(b)v(x)zf(z)/g(z),sov(5):g( )f ([;(5){2( )g'(5) _ 2( 3)22 3 Tg 2

/ 4 152
(b) Q(z) = F(z)/G(z).50 Q'(7) = G(F ([2(‘7)-;(7)G (M _ 13 152 (-3) _ i

. @y=29(z) = y =2g()+g(2) 1=ag(z)+g(z)

_ T r_9(@) - 1-zg(z)  g(z) —zg()
Ov=5m = v @) 9@
9(z) 1 29(@) —g(@) -1 z¢'(z) — g(x)

(C)sz - V= (z)2 z2

B @y=2"f(z) = ¢ =22f(z)+ f(z)(22)

®y-10 o P @0 @) -2

@)’ =
_ :B_ ,_ flz)(2z) — x2f’(:c)
R 5 B B e
(d)y= 1 +5£(z)
I R I i Py
Vz)?

_ 2P @) 4@ (@) - Ja P~ 12V (1) 201 a(a) + 20 F(e) - 1

T " 9g1/2 22372
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39.

40.

a.

42,

If P(t) denotes the population at time ¢ and A(t) the average annual income, then T(t) = P(t)A(t) is the total
personal income. The rate at which T'() is rising is given by T"(t) = P(t)A'(t) + AP (t) =
T7(1999) = P(1999)A’ (1999) + A(1999) P'(1999) = (961,400)($1400/yr) + ($30.593)(9200/yr)
— $1,345,960.000/yr + $281.455.600/yr = $1.627.415.600/yr
So the total personal income was rising by about $1.627 billion per year in 1999.

The term P(t) A’ (t) = $1.346 billion represents the portion of the rate of change of total income due to the
existing population’s increasing income. The term A(t)P'(t) =~ $281 million represents the portion of the rate of
change of total income due to increasing population.

(a) £(20) = 10.000 means that when the price of the fabric is $20/yard, 10,000 yards will be sold.

f'(20) = —350 means that as the price of the fabric increases past $20/yard. the amount of fabric which will be

sold is decreasing at a rate of 350 yards per (dollar per yard).
®) R(p) =pf(p) = R =pf(P)+fp)1 =

R'(20) = 20f'(20) + £(20) - 1 = 20(—350) + 10.000 = 3000. This means that as the price of the fabric

increases past $20/yard. the total revenue is increasing at $3000/($ /yard). Note that the Product Rule indicates

that we will lose $7000/($/yard) due to selling less fabric. but that that loss is more than made up for by the
additional revenue due to the increase in price.
@+ D) -2() _ 1
(z+1)? (z+1)*

Ify=f(z) = ;:_:U-—l then f'(z) = When z = a, the equation of the tangent

1
—il- = (_f}_lT)E(m — a). This line passes through (1,2) when 2 — ﬁ—l = m
a a
20a+1)?%—-ala+l)=1-a & 22 +4da+2-a2—a—-14a=0 & a’+4a+1=0.

—4+ /42 —4(1)(1 —4+ /12
The quadratic formula gives the roots of this equation as a = Q0] = 5 =243,

lineisy — (1-a) «

2(1)
. i i 6
so there are two such tangent lines. Since — \
f( 2i\/§)— 243 _ —2xV3 -1F3 B T
2£VB+1  —1+V3 -1FV3 P A ¢
2+2V3FV3-3_-1+v3 _1FV3
B 1-3 -2 27 L
__
the lines touch the curve at A(—Q + /3, 1—_23@> ~ (—0.27,—0.37) and -6
B(-2-+3. 153 ~ (~3.73.1.37).
_z-t ks D) = @ -HA) _ 2 If the tangent intersects the curve when z = a,
vyl YT (z+1)2 T (x+1)% g '
then its slope is 2/(a + 1)*. But if the tangent is parallel to z — 2y =2, — 6 \

2 1
that is, y = 32 — 1. then its slope is 3. Thus, (@ 1)2 =3

(a+1)*=4 = at+l=%2 = a=1lor—3 Whena=1y=0

and the equation of the tangentisy — 0 = 3(z — 1) ory = iz—3.

When a = —3, y = 2 and the equation of the tangentis y — 2 = i(z+3)

1 7
ory =s3T+ 3.
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We will sometimes use the form f’g + fg’ rather than the form fg’ + g f' for the Product Rule.
8. () (fgh) = [(f@)hl = (fo) h + (fo)h' = (f'g + fg)h+ (fo)h' = f'gh + fg'h+ fgh'
(b) Putting f = g = h in part (a), we have
%[f(m)]3 =1 =FfF+ P F+F1f =3fff =3[f())f (z).

d T d z\3 \2 =z __ 2z _x 3z
(C)a(eii):%(e) :3(6) e’ = 3e“%e® = 3e

d
z) ——(1) =1 —[g(z)]
4. (a) % <*1 ) = 9(x) d:c( ) dx [Quotient Rule]

9(z)
9() - 0-1-g'(z) _0-g'(x) __ ¢'(a)
[9(z)]? [9(=)]? l9(=)]?
1 , 4z + 22 —2z(2z% + 1)
Tttt T YV T T Y i)

d 1 ny/ ) ) n—1 e 1—2n e
(c) a (z7") = — <F> = —((;E—n))g [by the Reciprocal Rule] = —n;n =—nz" 17 = _pgn-l

3.3 Rates of Change in the Natural and Social Sciences

L @s=f(t)=t"-10t+12 = w(t)=f(t) =2t — 10
() v(3) =2(3) — 10 = —4 ft/s
(c) The particle is at rest when v(t) =0 <« 2t —10=0 < ¢=5s
(d) The particle is moving in the positive direction when v(t) >0 & 2-10>0 < 2t>10 < ¢>5.
(e) Since the particle is moving in the positive direction (f) t=38,
and in the negative direction, we need to calculate the s=—4

distance traveled in the intervals [0, 5] and [5, 8] t=5, Q
separately. |f(5) — f(0)] = |~13 — 12| = 25 ftand s=13 1=0,

s=12
If(8) — f(5)| = |—-4 - (—13)| = 9 ft. The total ,
distance traveled during the first 8 s is 25 + 9 = 34 ft. 0 ’
2@s=ft)=t"-97+15t+10 = o(t) = f(t) =3t — 18t + 15 = 3(t — 1) (¢ — 5)
(b) v(3) = 3(2)(-2) = —12ft/s (f) 1=38,
5 =66
©v(t)=0 & t=1sorbs t=35, 7)
Dot)>0 & 0<t<lort>5 s=-15 ;—‘D t=1,
=0, s=17
© 1£(1) = £(0)] = 17— 10| =7, 5=10 ,
|£(5) — f(1)] = |-15 — 17| = 32 and 0

1F(8) — £(5)] = |66 — (—15)| = 81.
Total distance = 7 4 32 + 81 = 120 ft.
S @s=f(t) =122 +36t = w(t)= f/(t) = 3t* — 24t + 36
(b) v(3) =27 — 724 36 = —9 ft/s
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(c) The particle is at rest when v(t) = 0. 3t> — 24t +36 =0 = 3(t—-2)(t-6)=0 = t=2sor6s.
(d) The particle is moving in the positive direction when v(t) > 0. 3(t —2)(t —6) >0 <« 0<t<2ort>6.

(e) Since the particle is moving in the positive direction and in the ) t=38,
negative direction, we need to calculate the distance traveled in the (=6 s=32
intervals [0, 2], [2, 6]. and [6, 8] separately. s=0 E -2

I£(2) = £(0)] = [32 — 0] = 32. s’zg' s=32

|£(6) — £(2)] = |0 — 32| = 32. 0 s
17(8) ~ 1(6)] = 132 - 0] = 32.
The total distance is 32 + 32 + 32 = 96 ft.
4 (ys=ft)=t'—4t+1 = o(t)=f(t)=4>—4
(b) v(3) = 4(3)® — 4 =104 ft/s
(c) Itis atrest when v(t) = 4(t* — 1) =4(t —1)(* +t +1) =0 & t=1s
(d) It moves in the positive direction when 4(t3 — 1) >0 & t>1.
(e) Distance in positive direction = | f(8) — f(1)| = |4065 — (—2)| = 4067 ft

Distance in negative direction = |f(1) — f(0)| = [-2 — 1| = 3 ft
Total distance traveled = 4067 + 3 = 4070 ft
(f) 1=38,
s = 4065

“© o~
[
|-
h
A
I
-

;
P 1 p—s
>@e= F% = u(t)=5(t) = E +(:2) (i)l)_?t(%) - (tlz:utlz)z
(b)u(3)=1_—£)i:1—9_:_8_ s

(324+1)2 102 100 25
(c) Itis atrest whenv =0 1-t2=0 < t=1s [t# —1sincet>0].

(d) It moves in the positive direction whenv >0 < 1-— t2 S0 & t2<1l & 0<t<Ll

(e) Distance in positive direction = |s(1) — s(0)| = |3 -0 =
Distance in negative direction = 13(8) —s()|=|& 3| = 495
Total distance traveled = 3 + 755 29 = 5T fit

) t= 83'

s=75
) t=1
1
t=0, $=2
s=0
0 3

1
2
6. (a) s = v/ (3t2 — 35t +90) = 3t°/% — 35t>/% + 90t'/? =

o(t) = 8/ (t) = 2432 — 1B41/2 4 45¢71/% = 1541/2(¢2 — Tt + 6) = \/.(t —1)(t — 6)
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(b) v(3) = 55 (2)(-3) = —15 V3 ft/s
(c)Itisatrestwhenv =0 < t=1sor6s.
(d) It moves in the positive direction whenv >0 & (t—1)(t—-6)>0 < 0<t<1 or t> 6.
(e) Distance in positive direction = [s(1) — s(0)| + [s(8) — s(6)| = 58 — 0] + [4 V2 — (~12V/6)]
=58 +4+v/2+ 126 ~ 93.05 ft

Distance in negative direction = [s(6) — s(1)] = [~12v/6 — 58 = 58 + 12v/6 ~ 87.39 ft

Total distance traveled = 58 + 4v/2 + 1216 + 58 + 12 /6 = 116 + 4/2 + 24 /6 ~ 180.44 ft
f) =8

~-294 1=1,
s=58

0 s
Ls(t)=1—45° -7t = o(t)=s(t)=32-0t-7T=5 o 32-0_-12-0 <
3t-4)(t+1)=0 & t=4 or —1.Sincet> 0. the particle reaches a velocity of 5 m/s att = 4s.

_ds
T odt
B v(t)=35 = 5+6t=35 = 6t=30 = t=5s.

8 (s=5t+32 = () =546t s0v(2) =54 6(2) = 17m/s.

9. (a) h =10t — 0.83> = w(t) = % =10 — 1.66t. 50 v(3) = 10 — 1.66(3) = 5.02 m/s.

1 17
b h=25 = 10t-083t>=25 = 0832—-10t+25=0 = t= %_ ~ 3.54 or 8.51.

The value t; = (10 — /17 )/1.66 corresponds to the time it takes for the stone to rise 25 m and
ty = (10 + \/ﬁ)/1.66 corresponds to the time when the stone is 25 m high on the way down. Thus,
v(t1) =10 — 1.66[(10 — V17)/1.66] = V17 ~ 4.12 m/s.

10. (a) At maximum height the velocity of the ball is 0 ft/s. v(t) =s'(t) =80 -32t=0 < 32%t=80 <«
2

t = 3. So the maximum height is s () = 80(%) — 16(3)" = 200 — 100 = 100 ft.

(b) s(t) =80t—16t> =96 <« 1612-80t+96 =0 <« 16(t =5t +6) =0 < 16(¢—3)(t—2) = 0.
So the ball has a height of 96 ft on the way up att = 2 and on the way down at ¢ = 3. At these times the
velocities are v(2) = 80 — 32(2) = 16 ft/s and v(3) = 80 — 32(3) = —16 ft/s, respectively.

M. (@) A(z) =2® = A'(z) =2z A'(15) = 30 mm?/mm is the
rate at which the area is increasing with respect to the side length

as x reaches 15 mm.

(b) The perimeter is P(z) = 4z, so A'(z) = 2z = 3(4z) = 1P(z).
The figure suggests that if Az is small, then the change in the area
of the square is approximately half of its perimeter (2 of the 4
sides) times Az. From the figure, AA = 2z(Az) + (Ax)2 If

Az is small, then A4 ~ 2z(Az) and so AA/Azx ~ 2z.
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12. (a) V(z) = &

13.

14.

15.

16.

% = 322, % i =3(3)? = 27 mm®/mm is
the rate at which the volume is increasing as z increases past 3 mm.

(b) The surface area is S(x) = 6z, so
V'(z) = 32® = (62%) = 3S(x). The figure suggests that if Az is
small, then the change in the volume of the cube is approximately half
of its surface area (the area of 3 of the 6 faces) times Az. From the
figure, AV = 3z%(Az) + 3z(Az)? + (Az)®. If Az is small. then
AV =~ 32%(Az) and so AV/Az =~ 3z°.

(a) Using A(r) = mr?. we find that the average rate of change is:

L AB)—A(2)  9m—4Am .. A(2.5) — A(2) _ 6.25m —4m
W= =771 i =55—5 ~~ 05 7
A1) - A(2)  4d4lm —4m

(i11) 21-2 = 01 =4.1r

(b) A(r) =7mr2 = A'(r) =2nr,so A'(2) = 4.

(c) The circumference is C(r) = 2mr = A’(r). The figure suggests that if Aris
small, then the change in the area of the circle (a ring around the outside) is
approximately equal to its circumference times Ar. Straightening out this ring
gives us a shape that is approximately rectangular with length 277 and width
Ar.so AA ~ 27r(Ar). Algebraically.

AA = A(r+ Ar) — A(r) ==(r + Ar)? — r? = 2mr(Ar) + m(Ar)?.
So we see that if Ar is small, then AA = 27r(Ar) and therefore,
AA/Ar = 27r.

After £ seconds the radius is r = 60¢. so the area is A(t) = w(60t)> = 3600mt* = A'(t) = 7200mt =

(a) A’(1) = 7200w cm®/s (b) A'(3) = 21,6007 cm® /s (c) A'(5) = 36,000 cm? /s
As time goes by. the area grows at an increasing rate. In fact, the rate of change is linear with respect to time.

S(r) =d4nr? = S'(r)=8mr =

(a) S'(1) = 8m ft*/ft (b) §'(2) = 16 £t /ft (c) §'(3) = 24 ft*/ft

As the radius increases. the surface area grows at an increasing rate. In fact, the rate of change is linear with respect
to the radius.

(a) Using V (r) = 47r®. we find that the average rate of change is:
V(8) - V(5)  §m(512) — §m(125)

(1 —=_5 3 = 1727 pm®/pm
- 47(216) — 27(125 -
(ii) M = ol ) — §m(125) = 121.37 pm®/um
6—5 1
L V(51)—V(5) _ 3m(5.1)° — 47(5)° _ 5
= =102.013
(iii) 515 01 m um® /pm

(b) V'(r) = 4nr?. so V'(5) = 1007 pm?®/pm.
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18.

19.

20.

21.

SECTION 3.3 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES O 169

© V(r) =37’ = V'(r) = 4nr® = S(r). By analogy with Exercise 13(c). we can say that the change in the
volume of the spherical shell, AV is approximately equal to its thickness, Ar, times the surface area of the
inner sphere. Thus, AV ~ 477?(Ar) and so AV/Ar ~ 47r2.

The mass is f(z) = 3z, so the linear density at z is p(z) = f'(z) = 6z.
(@) p(1) = 6 kg/m (b) p(2) = 12kg/m (©) p(3) = 18 kg/m
Since p is an increasing function, the density will be the highest at the right end of the rod and lowest at the left end.

V(t) = 5000(1 - &t)* = 5000(1 — &t + A=t2) = V(1) = 5000( 55 + go5t) = —250(1 — &¢)

1600
(@ V'(5) = =250(1 — %) = —218.75 gal/min (b) V'(10) = —250(1 — 12) = —187.5 gal/min
() V'(20) = —250(1 — 23) = —125 gal/min (d) V'(40) = —250(1 — 49) = 0 gal/min

The water is flowing out the fastest at the beginning — when ¢ = 0, V'(t) = —250 gal/min. The water is flowing
out the slowest at the end — when ¢ = 40, V’(t) = 0. As the tank empties, the water flows out more slowly.

The quantity of charge is Q(t) = t* — 2t + 6t + 2. so the current is Q'(t) =3t> — 4t + 6.

(@) Q'(0.5) = 3(0.5) — 4(0.5) + 6 = 4.75 A () Q' (1) =3(1)2—4(1) +6=5A

The current is lowest when Q' has a minimum. Q"(t)=6t—4 < Owhent < % So the current decreases when

t < 2 and increases when t > 2. Thus, the current is lowest at ¢ = 2s.

(a) F =

GmM 2 dF _3 2GmM
2 = (GmM)r = J:—Z(GmM)'r =03

force with respect to the distance between the bodies. The minus sign indicates that as the distance r between
the bodies increases, the magnitude of the force F' exerted by the body of mass m on the body of mass M is

. which is the rate of change of the

decreasing.
(b) Given F'(20,000) = —2, find F'(10,000). —2 = —wLM = GmM = 20,000°.
20.0003
2(20.000%)
F'(10,000) = - ————L — _9.23 — _
(10,000) 10.000° 2.2 16 N/km

(a) To find the rate of change of volume with respect to pressure, we first solve for V in terms of P.
C v C
= P T ap- P
(b) From the formula for dV/dP in part (a), we see that as P increases, the absolute value of dV/dP decreases.
Thus, the volume is decreasing more rapidly at the beginning.

(c)gz_lﬂ;_l(‘ﬁ)_ c__C _1
P2) (PV)P  CP P

vder~ VvV
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. C(6)—C(2) _ 0.0295 — 0.0570 AC  0.077
2. (a) (i) 62 7 (b) Slope = —= ~ ———= ~ —0.01 (moles/L)/min
= —0.006875 (moles/L)/min cw
.. C(4)—C(2) 0.0408 — 0.0570 0.08
(i) =
4-2 2 0.06 1
= —0.008 (moles/I.)/min 0.04
iy 2 = C(0) _ 0.0570 — 0.0800 002
2-0 2 S
= —0.0115 (moles/L)/min o 1 2 3 4 5 6 7 8 !
1860 — 1750 2070 — 1860
23, (a) 1920: my = —om— 100 _ 110 _ 2070 — 1860 _ 310 _
(@) 1920: m1 = Joor—g75 = o~ 1172 = Tgz5 1990 10 "
(m1 +ma2)/2 = (11 + 21)/2 = 16 million/year
1080 my = 4450 3710 _ pig _ 7y 5280 - 450 _ gy _ gy

1980 — 1970 10 1990 — 1980 = 10
(m1 +mg)/ 2 = (74 + 83)/2 = 78.5 million/year

(b) P(t) = at® + bt2 + ct + d (in millions of people), where a ~ 0.0012937063, b~ —7.061421911.
¢~ 12.822.97902. and d ~ —7,743.770.396.

() P(t)=at® +bt* +ct+d = P'(t)= 3at? + 2bt + c (in millions of people per year)
(d) P'(1920) = 3(0.0012937063)(1920)? + 2(—7.061421911)(1920) + 12.822.97902

~ 14.48 million/year [smaller than the answer in part (a), but close to it]

P'(1980) ~ 75.29 million/year (smaller. but close)
(e) P'(1985) ~ 81.62 million/year, so the rate of growth in 1985 was about 81.62 million/year.
2. (a) A(t) = at* + bt® + ct® + dt + e, where a = —5.8275058275396 x 107%, b = 0.0460458430461.
c = —136.43277039706. d = 179.661.02676871, and e = —88,717,597.060767.
(b) A(t) = at* +bt® +ct? +dt +e = A(t) = 4at® + 3bt> + 2ct +d
(c) A’(1990) = 0.0833 years of age per year
(d)

26t
25t
24}

23

0.3

0.2t

0.1

0

—0.1 —
1955 1965 1975 1985 1995
1950 1960 1970 1980 1990
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a’kt
B@ll=my =
__d[C] _ (akt+1)(a’k) — (a®kt)(ak) _ a’k(akt+1-akt) o
rate of reaction = e (akt + 1) = (akt +1)2 ~ (akt +1)2
a’kt a’kt +a — a®kt . a
(b)Ifm:[C].thena—m—a—akt+1— okt 1 T ekt+ 1
2 2
_ 2 a _ a’k _ d[C] f It (2 = d_:l)
So k(a — z) ¥k<akt+1> = (akt + 12 = [from part (a)] TR
aZkt (a®kt) /t a’k a’k
; — - = —_— = les/L.
(©) Ast — o0, [C] akt + 1 (akt + 1)/t ak + (1/t) - ak @ moles/
dic] o’k
(d)Ast—»oo,W-(—m—’O-

(e) As t increases, nearly all of the reactants A and B are converted into product C. In practical terms, the reaction
virtually stops.

26. (a) After an hour the population is (1) = 3 - 5005 after two hours it is n(2) = 3(3-500) = 32 - 500; after three
hours, n(3) = 3(3% - 500) = 3% - 500; after four hours. n(4) = 3* - 500. From this pattern, we see that the
population after ¢ hours is n(t) = 3" - 500 = 500 - 3¢.

(b) From (5) in Section 3.1, we have % (3%) ~ (1.10)3%. Thus, for n(t) = 500 - 3¢,

d
d—? = 500(%’5 (3%) & 500(1.10)3¢ = d—? ~ 500(1.10)3° a2 400,950 bacteria/hour.
t=6 ’

. P .
2]. (a) Using v = y (R* - 1"2) with R = 0.01, 1 = 3. P = 3000, and 5 = 0.027, we have v as a function of r:

3000

v(r) = 10.027)3 (0.01% = %). v(0) = 0.925 cm/s. v(0.005) = 0.694 em/s, v(0.01) = 0.

P P j2
® v(r) = — (R* = %) = o/(r) = — (—2r) = —2—7;;. When I = 3, P = 3000, and 1) = 0.027. we have

T 4nl —4_771

V'(r) = —2(?[’)%%. v'(0) = 0.v'(0.005) = —92.592 (cm/s) /cm. and v'(0.01) = —185.185 (cm/s) /em.

(¢c) The velocity is greatest where r = 0 (at the center) and the velocity is changing most where 7 = R = 0.01 cm
(at the edge).

2. () (i)f:%\/%_:(é %)L‘l N

(i) f = = ﬁ 1
2.V ~\2r 5 2L /p Niv)
— i I — \/T —-1/2 df _ 1 ‘/T -3/2 \/T
(i f 2L\/;— <E) P 7R (T Y T
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(b) Note: Tllustrating tangent lines on the generic figures may help to explain the results.

. d . . .
(1) EJ% < O0and L is decreasing = f isincreasing = higher note

(ii) d—; > 0and T is increasing = f isincreasing = higher note

df
dp
i f

(iii)

< 0and pisincreasing = fisdecreasing = lower note

Gi) f (i) f

f=kJT

0 L 0 T 0 p

29. (a) C(z) = 2000 + 3z + 0.012* + 0.00022> = C'(z) =3+0.02z + 0.0006z>

(b) C'(100) = 3 + 0.02(100) + 0.0006(10,000) =3 +2+6 = $11/pair. C’(100) is the rate at which the cost is
increasing as the 100th pair of jeans is produced. It predicts the cost of the 101st pair.

(c) The cost of manufacturing the 101st pair of jeans is
C(101) — C(100) = (2000 + 303 + 102.01 + 206.0602) — (2000 + 300 + 100 + 200)
=11.0702 =~ $11.07

30, (a) C(z) = 84 + 0.16z — 0.0006z + 0.000003z° = C'(z) = 0.16 — 0.0012z + 0.000009z> =
C’(100) = 0.13. This is the rate at which the cost is increasing as the 100th item is produced.

(b) C(101) — C(100) = 97.13030299 — 97 ~ $0.13.

/ p— . / —
31. (a) A(z) = PE) o )= (2) wf(””) L_p (“”)12 P 4(z)>0 = A(z)isincreasing: that
x
is, the average productivity increases as the size of the workforce increases.

T
(b) p' () is greater than the average productivity = Pz)>Alx) = p(z)> ng—) =
U
zp'(z) > plx) = zp'(z)—p@)>0 = —gﬂ%—p@ >0 = A(z)>0.
2 @5~ iE (1+42°4) (9.657°°) — (40 + 242"") (1.6z7°°)
A (1 + 4204)?
9627 +3842 %% — 642 %° — 38.4z7°2  54.4c7%°
B (1 + 4x04)° (1 + 4204)*
(b) 40 At low levels of brightness, R is quite large [R(0) = 40] and is
W quickly decreasing, that is, S is negative with large absolute value.

This is to be expected: at low levels of brightness, the eye is more

0 t K’——’ ! sensitive to slight changes than it is at higher levels of brightness.
S
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PV PV 1

= = = = PV'). Using the Product Rule, we have
BPV=nRT = T=TF = {oy0081) ~ osz1' V) Usineg
dT 1 1 .
— = —— [Pt)V'(t) + V(£)P'(t)] = ——= [(8)(=0.15) + (10)(0.10)] =~ —0.2436 K /min.
= 5 POV + VPO = o [(9)(-0.15) + (10)(0.10)] /
34. (a) If dP/dt = 0, the population is stable (it is constant).
dp P B P P B ( ﬁ)
— = = - = —=1- = - =1-— = P=PFP(1-—=|.
(b) 7 0 = pgP ro<1 P,;>P = - 1 23 = 2 o~ o
If P. = 10,000, ro = 5% = 0.05, and 8 = 4% = 0.04, then P = 10,000(1 — £) = 2000.
(¢) If 8 = 0.05. then P = 10,000(1 — £) = 0. There is no stable population.
35. (a) If the populations are stable, then the growth rates are neither positive nor negative; that is,
dC dw
E = 0and E- =0.
(b) “The caribou go extinct” means that the population is zero, or mathematically, C = 0.
(c) We have the equations % =aC — bCW and dd—VtV =—cW +dCW. LetdC/dt = dW/dt = 0, a = 0.05,

b= 0.001, ¢ = 0.05, and d = 0.0001 to obtain 0.05C — 0.001CW = 0 (1) and

—0.05W + 0.0001CW = 0 (2). Adding 10 times (2) to (1) eliminates the CW -terms and gives us

0.06C -05W =0 = C = 10W. Substituting C = 10W into (1) results in

0.05(10W) — 0.001(10W)W =0 <« 05W —0.01W2=0 <« 50W -—W2=0 <«
W((EO-W)=0 < W =0or50.Since C = 10W.C = 0 or 500. Thus. the population pairs (C, W)
that lead to stable populations are (0, 0) and (500, 50). So it is possible for the two species to live in harmony.

3.4 Derivatives of Trigonometric Functions

1
2
3
4

- f(x)=2—3sinz = f'(z)=1-3cosz

. f(z) =zsine = f'(z) ==z cosz + (sinz)-1==zcosz +sinz
.y =sinz +10tanz = 3’ =cosz + 10sec’z

-y =2cscx+5cosx = y = —2cscrcotzr — Hsinz

5.g(t) =t’cost = g'(t) =t3(—sint) + (cost) - 3t> = 3¢* cost — t3sint or t2(3 cos t — tsint)
6. g(t) =4sect +tant = ¢'(t) =4secttant + sec®t

1. h(0) =cscO+elcotd =

h'(8) = —cscHcot 6 + €’ (—csc?8) + (cotB)e? = — cschcot O + (cot & — csc? §)

8 y=e"(cosutcu) = y':e”(—si11u—f—c)+(cosu+cu)e”:e“(cosu~sinu+cu+c)

9.y -2 Y = (cosz)(1) — (z)(—sinz) _ cosz +zsinx
cosz (cosz)? cos? ¢
10y = 1+sinz
z +coszx
Y = (z + cosz)(cosz) — (1 +sinz)(1 —sinz)  xcosz + cos?z — (1 —sin®x)
(z + cosz)2 N (z + cosz)?
_ zcosz +cos’z — (cos® z) _ zcoszx

(z + cosz)? "~ (z +cosz)?
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sec 6
1. f(g) = —2¢Y
16) 1+ sect
£(0) = (1 + sec 8)(sec 0 tan ) — (sec 8)(sec ftan ) _ (sec@tan)[(1 +sech) —sech]  secHtand
(1+ sech)? (1 + sec)? " (14 sech)?
12y = tanz — 1
sec

i@,_/ _ seczsec? z — (tanz — 1)secztanz  SecT (sech —tan2z+tanx) 1+ tanzx

dz sec? sec? secz
Another method: Simplify y first: y = sinz —cosz = y = cosz +sinz.
sinz o = z?cosz — (sinz)(2x) z(xcosx —2sinz) wcosx —2sinz

22 vy = (w2)2 4 3

13.y=

14. y =cscH (0 +cotd) =
y' = csch (1 — csc®0) + (6 + cot §)(—cscb cot ) = cscd (1 —csc®f —Ocot — cot? §)
=cscl (— cot? 6 — fcot § — cot? 6) [1 + cot? § = csc? 0]
= csch (—Ocot§ — 2cot? §) = —cscB cot O (6 + 2cot b)
15. y = secf tanf = 1y’ =sec (sec’ ) + tan 6 (secftanf) = sec (sec 6 + tan® 0)

Using the identity 1 + tan? 6 = sec? 6, we can write alternative forms of the answer as
sech (1 + 2tan®0) or sech (2sec®f — 1)

16. Recall that if y = fgh. theny’ = f'gh+ fg'h + fgh'. y = zsinzcosz =
dy

e sinzcosz + zcoszcosT + Tsinz (—sinx) = sinrcosx + zcos’z — xsin’z
d d 1 i — 1(cos -
17, %L (csen) = L (= _ (sin :L')(O) - (cosx) _ .cozs:v _ .1 ) C(.)S.'L‘ esczcotz
dz dzr \sinz sin“ sin“ x sinz sinz
1 0) — 1(~si i i
18. i(sec:c): d _ (cosz)(0) — 1(—sinzx) _ sinz _ 1 sinz o otang
dz dr \ cosz cos?z cos2T  COST COST
19, d (cot ) = d (c95m> _ (sinm)(—sinx.) —2— (cosz)(cosz) _ _sin2 w‘+2c032w S 12 sl
dz dr \sinzT sin® sin“ sin“
20. f(z) =cosz =
£(z) = lim flz+h)— f(x) — lim cos(z +h) —cosz _ im coszcosh —sinzsinh —cosz
h—0 h h—0 h h—0 h
. cosh—1 . _sinh . cosh—1 . . sinh
= lim [ cosx ———— —sinz = cosz lim ———— —sinz lim
N h h—0 h h—0

= (cosz)(0) — (sinx)(1) = —sinz

2N.y=tanz = y =sec’z = theslope of the tangent line at (%,1)issec’® § = (\/5)2 = 2 and an equation
of the tangent line isy — 1 = 2(3: — %) ory=2z+1-7.

22 y—e"cosz = y =e°(—sinz)+ (cosz)e® = e (cosz — sin z) = the slope of the tangent line at
(0,1) is €°(cos 0 — sin0) = 1(1 — 0) = 1 and an equationisy — 1 = I(z—0)ory=z+ 1

B.y=z+cosz = y =1-—sinz At(0,1), ' = 1. and an equation of the tangent line is y — 1 = 1(x — 0), or

=z+1
Moy =y = __COST ST ipociprocal Rule]. At (0.1). 3 = 120 gy and
sinz + cos T (sinz + cos x)? (0+1)2

an equation of the tangent lineisy —1 = —1(z —0),ory = —z+ 1.
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25 a)y=xzcosx = y =z(—sinz)+cosz(l) = cosz — zsinz. (b) 1
So the slope of the tangent at the point (7, —7) is . 5
cosm — wsinm = —1 — w(0) = —1. and an equation is

y+m=—(z—mory = —uz.

(7, —m)
\
-5
26. (a) y =secz —2cosz = y =secztanz +2sinz = (b) g 3 -
the slope of the tangent line at (E, 1) is
sec I tan 3+ 2sm r2=2. \/_ 3+2- =3 \/5 and an equation is (% I)

y—1:3\/_(z—§)ory:3\/§a:+1—7r\/?—>. -2 \ 4

o )

2]. (a) f(z) =2z +cotz = f'(z)=2—csc’z
(b) 6 Notice that f'(z) = 0 when f has a horizontal tangent.

[ is positive when f is increasing and f' is negative when f

is decreasing. Also, f'(z) is large negative when the graph

of f is steep.

8. (a) f(z) = Vzsine = f'(z) =/Tcosz + (sinw)(%z‘lﬂ) =/zcosz + ;lil/;

(b) 3 Notice that f’(z) = 0 when f has a horizontal tangent.
f f" is positive when f is increasing and f is negative when f
. is decreasing.
0 > 2
|
-3
29. f(;v) =z+ 2sinx has a horizontal tangent when f'(z) =0 & 1+2cosz =0 <« cosz=-1 o
z =2 + 2mnor 4% 4 27wn, where n is an integer. Note that 4" and T are +% units from 7. This allows us to
write the solutions in the more compact equivalent form (2n + 1)7r + Z.nan integer.
coszx
30 y = S rsna
Y = 2+ sina:)(-sin.x) —coszcosz _ —2sinz — sir.l2 z —cos’z _ —2sin.z —1_ 0 when
(2 +sinx)? (2+sinz)? (2 +sinz)?
—2sinz-1=0 & sinz=-1 & z= Ur | ornorz = ™ + 27n, n an integer. So y = 75 or

Y = — 5 and the points on the curve with horizontal tangents are: (“—’r + 27n, \/5) (% + 27n, — ﬁ)

7 an integer.

-_—
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31. (a) z(t) = 8sint = wv(t) =z'(t) = 8cost
(b) The mass at time ¢ = 2% has position z (%) = 8sin Z = 8(4) = 4+/3 and velocity
v(%) = 8cos ¥ = 8(—3) = —4. Since v(%) < 0. the particle is moving to the left.
32. (a) s(t) = 2cost +3sint = wv(t) = —2sint + 3cost

(b) (c) s=0 = t2 =~ 2.55. Sothe mass passes through the

N -~ equilibrium position for the first time when ¢ ~ 2.55s.
. /x (dv=0 = t;~0.98, s(t1)~ 3.61 cm. So the mass
7\

travels a maximum of about 3.6 cm (upward and downward)

from its equilibrium position.

(e) The speed |v] is greatest when s = 0; that is, when

t = to + nm, n a positive integer.

33. From the diagram we can see thatsinf = /10 < z = 10sinf. We want to find the

rate of change of x with respect to 6 that is. dz /df. Taking the derivative of the above

10 expression, dz/df = 10(cos 8). So when 6=3,
dz/df = 10cos T = 10(3) = 5 ft/rad
[
X
M. (a) F = uW N dF _ (psinf + cos 6)(0) — uW (pcos —sinf)  pW(sin6 — pcos 0)
' " psinf + cosd do (sin 6 + cos0)” (usin + cos6)?
(b) % —0 = uW(sin—pcosf)=0 = sind=pcosd = tanf=p = 6O=tan 'p
0.6(50)
= 0<6<1, that
(c) 30 From the graph of F’ 0 Gom0+ cosd for 0 < 0 < 1. we see thal
dF . .
0= 0 = 6 =~ 0.54. Checking this with part (b) and p = 0.6,
we calculate @ = tan~" 0.6 ~ 0.54. So the value from the graph is
consistent with the value in part (b).
0 1
25
. sin3z . 3sin3z . .
35. lim = hrr%) [multiply numerator and denominator by 3]
A T— X
=3 lim 222 [asz — 0.3z — 0]
3z—0 3
. sinf
= 3 lim [let 6§ = 3z]
6—0 0
= 3(1) [Equation 2]
=3
sin4zx sin 4x T . 4sindx . 6x
. _ ) _ 1
%. alcli% sin 6z ilgzl ( T sin 63:) l% 4z 250 6 sin 6
sindr 1 6x 1 2
— 41 i — . —4(1) - =) = =
4lim == g im e =450 =73
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tan 6t sin 6t 1 t 6sin6t . 2t
. _ . . =l - lim - lim —
3 }1_1}(1) Sin2t =0 < t  cos6t sin Qt) t—0 6t  t—0cos6t t—0 2sin2t
sin 6t 1 1. 2t 11
=61 - i - = =6(1)-=-=(1)=3
Ol 5 M oser 34 B ey — oW 1 5@
cosf — 1 lim cosf —1
. cosf—1 . 9 60 0 0
= = - = — = O
3. (gl—r»% sin @ 400 sind . sin @ 1
0 6—0 @
sin(cos 0) sin((}im cos 0) sin
39. lim = =0 =2— =sinl
6—-0 secf lim sec 6
6—0
.2 . . . . ¢
40, lim sin” 3t — lim sin 3t _sin 3t — lim sin 3t lim sin 3
t—0 t2 t—0 t t t—0 ¢ t—0 ¢
2 . 2
3t
- (lim Sm3t> = <3 lim 25 ) =(3-1)%=9
t—0 t—0 t
M. 1 cot2z _ cos2zsinz lim cos 2z (sinz)/z = lim cos 2z Ih_r’% lein 2}/
om0 cscx | emd  sn2z Al (sin2z)/z| ~ o 2 liII(l) [(sin 2z) /2]
1 1
2-1 2
sinx — coszx sinx — coszx . sinx — coszx
42, —_— " = ————— = lim - i
z—n/4  COS2x e—n/4cos?x —sinz  e—n/4 (cosz + sinz)(cosz — sin x)
. -1 -1 -1
= lim - = — — = —
e—m/4COST+sinz  cos§ +sinf /2
43. Divide numerator and denominator by 6. (sin 6 also works.)

sin @ lim sin @
im sin 6 = lim 0 = 620 0 = L _1
6—0 0+ tanf -0 sinf 1 sinf . 1 1+1-1° 2
_ + lim — Jlim ——
0 cosf —0 6 6—0cosf
. sin(z — 1) . sin(z — 1) . 1 . sin(z-1)
44, | _— — = = J_1 471
zl—>mlx2+as—2 zl—»ml(x+2)(z—1) ;1—>mlx+2al:l—»ml z—1 5 1=3
d . o o 2 )
. ) 2 tang — d sinz = seclg — COSTCOST —sinz (—sinz) _ cos"z +sin T S0 sec
dx dx cosz cos? ¢ cos? x
d d 1 — 1(—si i
(b) —secx = — = secrtanz = (cos ) (0) I Smw).Sosecwtanm: S .
dx dx cosz cos? cos? x
d , . d 1+cotx
(c) e (sinz + cosz) = P —

2

xTr =

1

cos?2z’

. cscz (— csc? x) — (1 + cot z)(— cscz cot z) cscx [—csc?z + (1+ cot ) cot x|
cosz — sinz= =

Socosz —sinz =

csc? x
_ —csc2w+cot2x+cotx _ —l+cotzx
cscx T cscx
cotr —1
Tescz

csc2

m
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46. Let |PR| = x. Then we get the following formulas for r and h in terms of 6 and z:

.60 .6 0 h 0
sin-=—- = r=gzsin-andcos- =— = h=zcos.
2 =z 2 2 =z
Now A(f) = 17r? and B(0) = 2(2r)h = rh. So
A(0) g T . xsin(0/2)
lim —~< = 2 =1z — =1 o> \v/e)
Jim gy = im S = e i e = e I es(8/2)

1o _
—27r01_1)r(111+tan(o9/2) 0.

47. By the definition of radian measure, s = r, where r is the radius of the circle.

2
By drawing the bisector of the angle §, we can see that sin g = 42 = d=2rsin Q
.S . 4 . 2-(8/2) . 6/2 S . o
Z = _ = = =1.[Th h 1 of th t
So lim 5= lim oty = i S @/2) ~ A sm(e) L SJustthereciprocs of the limi

lim ”i‘;’” — 1 combined with the fact that as § — 0, % — 0 also.]

z—0

3.5 The Chain Rule

1. Letu = g(x) = 4z and y = f(u) = sinu. Then % = %Z—Z = (cosu)(4) = 4cos4z.
d dy du 3 3
— — — — _ /2 ay _ ayau _ 1 -1/2(3y — _ .
2 Letu=g(z) =4+3zandy = f(u) =Vu=1u .Thendm Juds = 2Y (3) a/a  2viTee
3 Letu=g(z) =1—z?andy = f(u) = u'’. Then % = 3—3% = (10u®)(—2z) = —20z(1 — :c2)9 .
4. Letu = g(z) = sinz andy = f(u) = tanu. Then dy _ dydu _ (sec® u)(cosz) = sec?(sinx) - cosz, or
’ dz dudz

equivalently, [sec(sinz)]” cos z.
5 Letu = g(z) = vz andy = f(u) ="

dy _dydu _ (1 ap) e L€~
Then & = dudz ~ )(2‘” )_e 2vz 2@
6. Letu = g(z) = e and y = f(u) = sinu. Then dy _ dydu (cosu)(e”) = e® cose”.
=y dz ~ dudax

1. F(z) = (= + 41:)7 = F'(z)=7(z*+ 41)6(3302 +4) [or 728 (2® + 4)6(3w2 +4)]

8 F(z) = (¢ —z+ 1)’ = Fl(z)=3(" -2+ 1)* (2z — 1)

0 Flz)= TTozta° = (1+2e+2%)"" =

—3/4 d
dz

1
F/(.’IJ):%(I-JFZJT—F(L‘S) (1+2W+I3):m'(2+32}2)

2 + 322 2+ 3x2

T at2e+ a2t 400112+ 09)

3

- 8
0 f@) = (11 e = f@) =31+t ) = ey

3 , 4 —4/,.3 3,4 -4 _ —12¢°
1. g(t) = G&H"T S (1) = g =3+ )W) = 128 (¢ 1) =
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13.
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16.

17.

18.

19.

20.

21.

23.

24,

25.
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sec?t

f(t) = YT+tant = (1 +tant)'’® = f/(t) = L(1 +tant) *3sec?t = ——— 2
3 {/(1+tant)?

y=cos(a®+2%) = ¢ = —sin(a®+2%)  3z% [a®isjustaconstant] = —3g2 sin(a® + z°)
y=a’+cos*z = ¢y =3(cosz)’(—sinz) [a®is justa constant] = —3sinx cos® z

d
y=e M = ¢ = e*"”d— (—mz) =€e"™" (—m) = —me™ ™

x

y=4secbz = 1y =d4dsecbztanbz(5) = 20sec5z tan bz
g(z) = (1+42)°B +z —2?)® =
g'(z) = (1+42)° -8B +z — 2°)"(1 — 22) + B3+ z —2?)® - 5(1 + 4z)* - 4
=41 +42)*(3+z—2*)" [2(1 + 42)(1 - 22) + 5(3 + = — z?)]
=4(1+42)*(3+z — 2%)7 [(2 4 4z — 162?) + (15 + 5z — 5z%)]
=4(1+42)* 3+ z — 2%)" (17 + 9z — 212?)
h(t)=(t* -1 +1)* =
W) = ("~ 1)° - 4(t® +1)°(36%) + (¢2 +1)* - 3(¢* — 1)2(4t?)
=125t - 12+ 1)° [(t* — 1) + ¢(63 + D] =120(¢* - 1)*(° + 1) (2t + £ — 1)

y=(2c - 5)*(8z% - 5)“3 =

Y =422 - 5)*(2)(82° = 5) 7 + (22 — 5)*(~3) (82> — 5) * (162)
= 8(2z - 5)° (82" —5) ° — 48z(2z — 5)* (8% — 5) *

[This simplifies to 8(2z — 5)° (82° — 5) ~*(~42” + 30z — 5) |

y=(2"+1)(z*+2)"* =

2
y':2x(w2+2)1/3+(w2+1)(%)(m2+2)_2/3(2z)=2x(w2+2)1/3{1+ i J

3(z2 +2)

22

Yy =ze” = ¢ = me‘wz(—Qm) te 1= (—2m2 + 1) =e (1 - 2:82)

Ly =e Tcosl3z = ¢ =e5° (—=3sin3z) + (cos 3z)(—5e7°%) = —e~5%(3sin 3z + 5 cos 3z)

T CcosxT :> / T CcosT

y=e Yy =e

Using Formula 5 and the Chain Rule. y = 10" =
/ 2 d
¥ =10""*"(In10) - 7 (1=2%) = —2z(In 10)10" =",

[z —1 z—1\?
F = = _—
(Z) z4+1 (z—i—l) =

(1) (3) - 42" = o

F'(z2)

(z+1)1/2.z+1—z+1:1(z+1)1/2. 2 1
(z-1)¥2  (z+1)2 2DV (z+12 o112 (z41)32

1
T2
-1

2

d
"In (zcosz) = € [z(—sinz) + (cosz) - 1] = e®°*®(cosz — zsinz)

179
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2. G(y) = _y=D*

21.

(y? + 2y)°
G'(y) = W +29)° 4y—1)°-1—(y— :): 5(y2 + 2)* (2y + 2)
[(y? +2y)°]
2y +2y)* (y — 1’[2(y* + 2y) — 5(y — D (y +1)]

(2 +2y)"°
_ 2y - D[y + ) + (=5y° +5)] _ 20— X3y + 4y + 5)
(2 +2y)° (y? +2y)°
v= 1"2T+ 1

Y s Y
B T r T4+
R (VIS Yl N N/ WS
(/7.2+1) ( T‘2+1)2 (\/r2—|—1)2
_‘(7'2-{'1)'—7'2_ 1 2
“ ey wepm

)—3/2

)—1/2 =

Another solution: Write y as a product and make use of the Product Rule. y = r(rz +1
Vo= 1)+ ()T

= (Tz + 1)—3/2 [_Tz + (r2 + 1)1} — (rz + 1)—3/2 1) = (rg n 1)—3/2

1

The step that students usually have trouble with is factoring out (1"2 + 1) ~3/2 But this is no different than factoring

out 22 from z2 + z°; that is, we are just factoring out a factor with the smallest exponent that appears on it. In this
case. —% is smaller than —%‘

2u
e
28 y=—"
y eu + e—u
o (eu. +e—u) (6211, 3 2) _ eZu(eu _ e—u) B e2u(2eu +26—u _ et +e—u) 3 e2u(eu + 3e—u)
- (e* +e)’ - (ev +e)? (e’
Another solution: Eliminate negative exponents by first changing the form of y.
2u u 3u
-« e __¢
Yy ev e~ ¥ e 62'u +1
L (e2u + 1) (363u) _ eSu (2e2u) B eBu (362u +3— 2e2u) 3 eSu (e2u + 3)
- (e +1)° R (e2 +1)°
29. y = tan(cosz) = Y = sec?(cosz) - (—sinz) = — sin z sec?(cos T)
L2
0. y= sin®
cos T
., cosz(2sinzcosz) —sin’x (—sinz) _ sinz (2cos?z +sin*z)  sinz(1+ cos® z)
N cos?z - cos? x N cos?
=sinz (1 + sec® z)
Another method: y = tanxsinxz = y = sec? zsinx + tanz cos T = sec?rsinz +sinx
31. Using Formula 5 and the Chain Rule, y = gsinTz
y =257 (In2) - 5— (sinwz) = 27" "*(In2) - cosmx - T = 281 7T (1 1n 2) cos T
x
32. y = tan?(30) = (tan 30 = y' =2(tan30)- % (tan30) = 2tan 36 - sec? 30 - 3 = 6 tan 30 sec” 30



33

in L ! — sin > 1i_L *sinl—lcosl
34.y:msm; = yhsm;+mcosm 2z) =sn———

35

36.

39.

a.

42.

45.

47.
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y=(1+cos’z)® = ¢ =6(1+cos’z)® 2cosz(—sinz) = —12 cosz sinz (1 + cos® z)°

z
.y = sec’z + tan’z = (secz)? + (tanz)? =

Y = 2(secz)(secw tanz) + 2(tanz)(sec® z) = 2sec? ztanz + 2sec? ztanz = 4sec? z tan

ksec’\/z 0
y:ektanﬁ = y/:ektan\/a?‘%(ktanﬁ):ektanﬁ(kzse(?ﬁ'%m—1/2) — 2\/%/_ekta vz

.y = cot?(sinf) = [cot(sin0)]> =

y' = 2 [cot(sin §)] - di0 [cot(sin §)] = 2 cot(sin6) - [— csc?(sinh) - cos 0] = —2cos 6 cot(sin6) csc?(sin )

. y =sin(sin(sinz)) = y’ = cos(sin(sinz)) % (sin(sinz)) = cos(sin(sin z)) cos(sinz) cosz

_ 1 1
— r_ 1 1/2 1.,.-1/2 1
Y T+vz = Y =3(c+z) <1+23C ) 2 $+\/_a:< +2\/—z>

~1/2 _ ~
y=yz+Vz+vz = y':%(z-l— z—i—\/i) [1—{-%(1‘-{-\/5) 1/2(14—%:6 1/2”

(
= cos (tan Vsinz (sec2 \/M) <2 \/;IT.Q,‘) (cos )
d

y=2"" 5 y=2"(n2 L (312) = 2" (1n2)3% (In 3)(22)
dz

cy=(1+22)" = ¢ =10(1+22)°-2=20(1 + 2z)°. At (0,1), 4’ = 20(1 + 0)° = 20, and an equation of
the tangent line is y — 1 = 20(z — 0), ory = 20z + 1.

.y =sinz +sin’z = o =cosz+ 2sinzcosz. At (0,0). %" = 1, and an equation of the tangent line is

y—0=1(x - 0),ory =z.

y =sin(sinz) = y' =cos(sinz) - cosz. At (r, 0).y" = cos(sinm) - cos ™ = cos(0) - (-1) =1(-1) = -1,
and an equation of the tangent line is y — 0 = -z —7),ory = —z+ 7.
Ly=2%€"" = o = T?(—e™®) +e7%(2z) = 2ze~® — gle~ . At (1,1),y =2¢ 1 el = 1 Soan

equation of the tangent lineisy — 2 = 1(z — 1) ory = iz,

e e

1+e7%)(0) - 2(—e™?) 2¢~%
(@y= = y' = ( = . b 3
Tfe= 7 ¥ A+e=) Creep  ©
At (0,1).y = 2¢° - 2(1) -2 = l ©. 1)
) s (1 +60)2 (1 + 1)2 2 2
. L -3
So an equation of the tangent line is y — 1 = z-0)ory= i+ 1. L J3
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4. @) Forz > 0.]a] =z, andy = f(z) = —— (b) 4
g = VT W32 -a) (2w (2220 "
(\/2—1’2)2 (2_$2)1/2 W
(2"332) +z? 2 ‘1-5r

(2- z2)3/2 - (2- .'32)3/2

Soat (1,1), the slope of the tangent line is f'(1) = 2 and its equation

isy—1=2(zx—1)ory=2z— 1.

8. (@ f(z) = ——Vl;’”z N ®) .
pla =230 ) VIEE W) VI [ M
z? N . 1
—z? — (1-2?) -1
T V1—22 T V1—22 N d
-8
Notice that all tangents to the
graph of f have negative slopes
and f’(z) < 0 always.
50. (a) 1 From the graph of f, we see that there are 5 horizontal
ﬁ \f tangents, so there must be 5 zeros on the graph of f'.
From the symmetry of the graph of f, we must have
the graph of f’ as highat z = O asitislow atz = 7.
The intervals of increase and decrease as well as the
0 ' ' 4 signs of f’ are indicated in the figure.
RS EIRAN R REAIRE
o |- 4| = |f+| -
y
0 T fox

®) f(z) =sin(z +sin2z) =
f'(z) = cos(z + sin 2x) - % (x + sin 2x)

= cos(x + sin 2z) (1 + 2 cos 2z)




51.

52.

53.

55.

57.

58.
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For the tangent line to be horizontal, f'(z) = 0. f(x) = 2sinz +sin’z =
f'(x) =2cosz +2sinzcosc =0 ¢ 2cosz (1+sinz) =0 & cosz=0orsinz = —1,s0
z = % + 2nm or & + 2nm, where n is any integer. Now f(Z) = 3 and f(2Z) = —1, so the points on the curve

with a horizontal tangent are (% + 2nm, 3) and (3?" + 2nm, ~1), where n is any integer.

f(z) =sin2x — 2sinz = f'(z) = 2cos2z —2cosz = 4cos’z — 2cosz — 2, and
4cos’z —2cosz—2=0 & (cosz—1)(4cosz+2)=0 & cosz =1lorcosz = —%. Sox = 2nmor

(2n 4 1) £ Z, n any integer.

F(z) = f(g()) = F'(z) = f'(9(z)) - ¢ (2),
so F'(3) = f'(9(3)) - ¢'(3) = f'(6) - g’(3) = 7- 4 = 28. Notice that we did not use f(3)=2.

-w=uov = w()=uw(z) = w(zr)=1u(v(z))- () s0

w'(0) = ' (v(0)) - v'(0) = w/(2) - v'(0) = 4- 5 = 20. The other pieces of information, u(0) = 1,v/(0) = 3, and

v'(2) = 6, were not needed.

@ h(z) = f(9(2)) = W(z)=f(g(z)) g'(z). 50 k'(1) = f'(g(1)) - g'(1) = f'(2) 6 =56 = 30.
) H(z) =g(f(2)) = H'(z)=g'(f(z)) f'(z),50 H'(1) =g (1)) f'(1) = g'(3) 4 =94 = 36.

@ F@) = f(f() = F'@)=f(f)f)soF @) =f(f2) ') =f(1)-5=4.5=20.
®) G(@) =g(g(x)) = C'(2) =¢'(9(2) g'(x). 50 C'(3) = ¢'(9(3)) - ¢'(3) = ¢/(2)- 9 = 7-9 = 63,
@ u(@) = f(9(2) = o'(2) = £'(9(2))g'(2). Sow'(1) = F(g(1))g'(1) = F'(3)g/(L). To find f'(3). note

that f is linear from (2,4) to (6, 3), so its slope is

1
63" "1 To find ¢'(1), note that g is linear from (0, 6)

5 = 3 Thus, F(3)g'(1) = (<) (-3) = 2.

to (2,0), so its slope is (2)

®) v(z) = g(f(2)) = v'(z) =g (f(2))f (). Sov'(1) = g (F(1))f'(1) = g'(2)f'(1). which does not exist
since g'(2) does not exist.
©w(z) =g(9(z)) = w'(z)=g(9(z))g'(z). Sow'(1) = ¢'(9(1))g'(1) = ¢(3)g’(1). To find g'(3). note

= g
- . 2-0 2
that 1 fi i - = _
at g is linear from (2, 0) to (5, 2), so its slope is 533 Thus, g'(3)g’(1) = (%)(—3) = -2.

@ h(z) = f(f(2)) = I (z)=Ff(f(z)f ()
Sol'(2) = f/(f(2)f'(2) = /(1) (2) = (~1)(~1) = 1.

®) g(2) = f(2*) = g'(a) = f'(?) - % (%) = f'(=") (22).

Sog'(2) = f'(2%)(2-2) = 4f(4) ~ 4(1.5) = 6.
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59.

61.

62.

65.

66.

67.

68.

hz) = f(g(z)) = R'(z)=f'(g9(z))g (z). So h'(0.5) = f'(9(0.5))g’(0.5) = f'(0.1)g’(0.5). We can

estimate the derivatives by taking the average of two secant slopes.

14.8 - 12.6 18.4 —14.8
FOr'O.l:m:—: _ o2 2o 7 ~m1+m2_22+36
f'(0.1) 01-0 22, m2 0201 =36.So f'(0.1) = 3 =— =29.
0.10 - 0.17 0.05 — 010
For ¢'(0.5): =t = 7 mit+me _
¢'(0.5): my 05 _04 0.7, m2 06-05 0.5. So g’ (0.5) ~ 2 = —0.6.

Hence, 1/ (0.5) = f'(0.1)¢'(0.5) =~ (29)(—0.6) = —17.4.

Lg(z) = f(f(®) = ¢'(a)=f(f@)f (). S0g'(1) = f(F)F (1) = F2)f (1)

3.1-24 44 -3.1 m1 +m
For f'(2)m = ———— =14, me = ————— = / ~ 2
F'@:ma = 55— =14 me = 9555 = 26.50 /'(2) 7 %
2.0-18 24-20 my +
For f/(1):mi = =———= =04, mg = ——— = 11y g T 2 _
f(1):ma T0-05 U 0.8. So f'(1) 5 0.6.

Hence, ¢'(1) = f(2)f'(1) = (2)(0.6) = 1.2.

@ F@) = (") = F'@)=f(e) () = ()

) Gz) =@ = C(a)= e”’)d%f(x) = ) f'(a)

@ F@) = f(a") = F()=f6) 5 @)= @)
® G@) = [f@]" = C@=alf@)] /@)

. @) f(z) = L(z*) = f'(z)= L'(z*) - 42® = (1/2*) - 42® = 4/ forz > 0.

®) g(z) = L(4z) = g¢'(z)=L'(4z)-4=(1/(4x))-4=1/zforz >0.
© F(z) = [L@]* = F'(2)=4L@)P L@ =4Le) - (1/2) = 4L@)]]
@ Cl@) = L(ijz) = C)=L1/x) (-1/2%) = (/1) (-1/a?) =z (-1/a®) = ~1/z

forz > 0.

. r(z) = flg(h(@))) = 7'(x)=f'(9(h(2))) g'(h(x)) - W'(2). 50

(1) = f(g(h(1))) - ¢’ (R(1) - K1) = f'(9(2)) - g'(2) - 4= f'(3)-5-4 =654 =120
s(t) = 10 + 1sin(10mt) = the velocity after ¢ seconds is

o(t) = §'(t) = 3 cos(10mt)(10m) = *F cos(107t) cm/s.

(a) s = Acos(wt +8) = velocity = s’ = —wAsin(wt + 6).

nw—06

(b)IfA#0andw # 0, thens’ =0 & sin(wt+6)=0 & wt+b=nr & t=—r

n an integer.

aB 2 O77r 27rt 7™ 27t
(a)B(t)——4t0—t—0?>5sm54 = T (035cos )(54>- 54 54 —52(:05—571—

dB _Tm 2w
Att = — ~0.1
(b) Att =1, T - 54 cos 54 0.16.

L(t) = 12 + 2.8sin (2% (t — 80)) = L'(t) = 2.8cos(3g5 (¢t — 80)) (2%).
On March 21, t = 80, and L' (80) = 0.0482 hours per day. On May 21, ¢ = 141, and L' (141) = 0.02398, which is
approximately one-half of L'(80).
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69. s(t) = 2¢7 " sin2wt =
v(t) = s'(t) = 2[0"'5'(cos 2mt)(27) + (sin 27rt,)e“1'5'(—1,5)] = 2e 152 cos 2t — 1.5sin 27t)

) 15
F Graph of
Graph of !
! velocity
position 0 L \//\\7 2 0 L\//\ J b
~ -7
70. (a) lim p(t) = lim ! = ! =lsincek >0 = —kt— —00 = e " .
) ioh P t—oc 1 4+ ae—kt I1+a-0
~kt
—kty—1 dp I —ht\=2( gy kae
p(l) = . — =—(1+ae —kae = —
(b) [)(1) (J + ae ) = (h ( ) ( ) (1+(I€‘1‘.[)2
(c) I From the graph of p(t) = (1 +10e7%°) ™" it seems that
L p=08 p(t) = 0.8 (indicating that 80% of the population has heard the
rumor) when ¢ = 7.4 hours.
0 : 10

1. (a) Using a calculator or CAS. we obtain the model Q = abt with ¢ = 100.0124369 and b = 0.000045115933.
We can change this model to one with base ¢ and exponent Inb |b" = &' ? from precalculus mathematics or
from Section 7.3]: Q = ac'"™" = 100.012437, =10 005331t

(b) Use Q'(t) = ab' Inb or the calculator command nDeriv (Y;, X, .04) with Y,;=ab" (o get
Q'(0.04) ~ —670.63 #A. The result of Example 2 in Section 2 | was =670 pA.

72. () P = ab' witha = 1502711 x 10-2" and b = 1.029953851. 32000 (P in thousands)

where P is measured in thousands of people. The fit appears to be

very good.

1785 L 1865
0
. 5308 — 3929 7240 — 5308
() For 1800: 1) = ———— 7= _ 374, _ 7240 — 5308 _ 93.2.
! " 1800 — 1790 T R0 T 1mon 1932
So P'(1800) ~ (m, + m2)/2 = 165.55 thousand people/year.
) 23.192 — 17.063 31.443 — 23.192
For 1850: 1y = === =% _ G199y, = 31443 - 23192 25.
"= TI850 T 1840 = s T TRs0 = 8251

So P(1850) =~ (my + m2)/2 = 719 thousand people/year.

(¢) Use the calculator command nDeriv (v, X, year) with Y,;=ab" to get

P’(1800) ~ 156.85 and P'(1850) ~ 686.07. These estimates are somewhat less than the ones in part (b).

(d) P(1870) ~ 41.946.56. The difference of 3.4 million people is most likely due to the Civil War (1861-1865).
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45(t —2)% o o
W without simplifying. With either Maple or Mathematica. we first get

g (1) =94 2"y (=2

,and the s ification ¢ 4 e ,
2+ 1) 2+ 1) nd the simplification command results in the above expression.

73. (a) Derive gives ¢'(t) =

(b) Derive gives v/ = 2(2* —a + .'l):;(Q.r + )17 4 6
With either Maple or Mathematica, we first get
r_ 9. 4,3 . 4 ’ 5o 3 ; .
g = 1020 + 1) (2P =+ 1) +42e + 1) (07 —u 1)”(32* — 1). If we use Mathematica's Factor or
Simplify.or Maple's factor. we get the above expression, but Maple's simplify gives the polynomial
expansion instead. For locating horizontal tangents, the factored form is the most helpful.

— 92 + 3) without simplifying.

1 1/2
r—r+1
14, (a) f(x) = (l——i> . Derive gives /(1) =

whereas either Maple or
S | ¢ aple ¢

. . . 3
Mathematica give f' (z) = n :
xt—x+1

after simplification.

Sl PR D
4+ +1 (et + e+ 1)
) f()=0 & 3a'-1=0 & /% = £0.7598
(¢) f'(x) = 0 where [ has horizontal tangents. 1’ has two maxima and 3
one minimum where f has inflection points. f 1
AN
L Y J

|38

75. (a) If fis even. then f(x) = f(=x). Using the Chain Rule to differentiate this equation. we get
) = f'(—=x) 1] (—x) = —f'(—=2). Thus. fi—r)=—f'(x).s0 £ is odd.

) If f is odd. then f(x) = — f(—x). Differentiating this equation, we get ) =—f'(—r)(=1) = f'(—x).s0
f is even.

b {%} ) Y = @) =D ] g @

[y g () )t/( r) _ [()gl) - Sy )

N 12
g(r) [g(x))’ lg()]
( . - . . ' o
77. (1) — (sin” wcosnir) =n sin "1 cosacos e+ osin' (—nsinnx) [Product Rule]
dx
. . \ . . —1
— nsin” "' x (cos nacos - s sing) [factor out nsin " x]
— nsin” b cos(r ) |Addition Formula for cosine|
= nsin" " Hacos[(n + 1)) [factor out ]
(b) i (cos” xcosnr) =n cos "V (=sina)cos e + cos’ x (—nsinna) |Product Rule]
dr
B . y en— b
— —pcos" ™ (cosnr sin s £ sinnar CosT) [factor out —n cos x|
— —necos" " hasin(r 4 ) [Addition Formula for sine]

— —ncos" " tuasin|(n + 1)) [factor out x|
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78. “The rate of change of y°® with respect to z is ei ghty times the rate of change of y with respect to z° <&
4 y® =80 @ o byt dy =80 dy & 5y* =80 (Note that dy/dz # 0 since the curve never has a
dz dz dz dz

horizontal tangent) < 3* =16 <« y =2 (sincey > 0forall x)
d

d . o . s s us us o
19. Since 6° = (&) rad, we have e (sing°) = P (sin 7550) = 55 cos 156 = &= cos0°.

80. (a) f(z) = |z| = V22 = (m2)1/2 = fl(z)= %(w2)_1/2 (22) =z/Va? =z/ |z| for z # 0.

f is not differentiable at z = 0.

(b) f(z) = |sinz| = Vsin’z =

sinz
- cost =

|sin z|

~1/2 Ccos if sinz >0
f'(z) = 5 (sin’z) 2sinzcosz =

—cosz if sinz <0

f

<\OZ<QJ er f\z,?(Q%

f is not differentiable when z = n7, n an integer.

x x
T = T77€C08T =

cos T if x>0
(© g(z) =sin|z| =sinvVa? = ¢'(z) = cos|z|- 7 = Tl {

—cosz if <0

y

Q

2w X
g

g is not differentiable at 0.
81. First note that products and differences of polynomials are polynomials and that the derivative of a polynomial is

, —1 O = (P@\ _ Q@)P'(z) - Pz)Q' Ai(z
also a polynomial. When n = 1, 1 z) = (m> =2z []:Q(I)P 2)Q(z) = [Q(g]l)“,where

Ai(z) = Q(z)P'(x) — P(z)Q'(z). Suppose the result is true for n, — k, where k > 1. Then

= e

04D () — (Lc(’”) ) _ R@I* 44(z) - 4v(@) - (k + V[Q(e)]* - @'(x)

[@z)]+ (R
_ L@ A4 () ~ (k+ 1) Ak (2)[Q(@)]*Q ()
[Q(z)*+2
- @M@ 4@) — (k+ DA@)Q @)} Q) Ab(z) — (k + 1) Ak (2)Q ()
[Q@)]*[Q(z)]F+2 - [Q(z)]F+2

= Ak+1(£l?)/[Q(:1:)]k+2’ where Ak+1(:1:) = Q(.T)Afc(w) —(k+ I)Ak(-’E)QI(:L‘)

We have shown that the formula holds for n = 1, and that when it holds for n = £ it also holds for n — k+1.
Thus, by mathematical induction, the formula holds for all positive integers n.
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3.6 Implicit Differentiation

d d
1. (a)%(wy+2w+3z2):a(4) = (z-y+y 1)+2+6z=0 = zy=-y-2-6z =

y':————Hy_Q_Gxory':—ﬁ—y+2.
z
—2z -3z 4 4
(b)zy+2z+32°=4 = zy=4-2z -3z = y:4—-2ix—3—$:;—2—3x,soy’:——2—
, —y—-2-6z —(4/z—2-3z)—2—6x —4/z — 3z 4
= = = =-— -3
(c) From part (a), y . . p =
d 2 2 d , , 8z 4z
. (a) — =— 8r+18y-y' =0 = =——=——
2. (a) = (42 + 99%) e (36) = 8r+18y-y y 18y %
b dz? +9y° =36 = 9’ =36-42" = ¥ =3(9-2°) = y=+2/9—2% 50
, -1/2 _ 2
y ::t%~%(9——f132) (—21‘)—-:Fm
F it (a). o/ 4z 4z + 2z
a), —_ e — = — = .
(©) From part @).9/ = —g, = g3 503y~ T 3/0-o
d(1,1)_d 11, 1,1 Y
—(=+=)==0 ey =0 2 Y= P Y=—"3
3@ dz (a: y) da:() 2 y2y y2y x? z?
1 1 1 _z-1 z ,_@=1)1)-@)0Q) _
— - = —=1--= = = —, S = = .
(b)w+y L= y ! x z v=z_1%Y (x —1)? (z —1)2
2 2
I 74 €A ) __ 1
©y=-53% 22 T T2 1) (x — 1)
F_ VY

4‘(3)_(‘/_+\/—): 4 = \/_+——y—0 = Yy ="7

*=16-8yz+z = R
B i=4-vE > y=@-Ve) =16-8yz V=T
4-\z 4

I————\/,y:— :———+1
OY=-E"""%& V&
5, 4 (* + 2)———d—(1) = 2z+42yy =0 = 2y’ =-2z = y =-=
EE 113 ¥ —dl‘ y
6 —Li—(:rr"—y?):i(l) = 2r—2yy =0 = 2z=2uy = y’:g
" dzx dx Yy

2
1. di («® + 2’y + 4°) = di 6) = 3>+ (%Y +y-20) +8yy =0 = 'y 8y =3~y
T XL

307 + 20y __2(30+2)

= (a?48y)y =-32" -2y = V=-""arg T Ta2isy

2,/
8 —d—($2—2my+y3):i(c) = 2m—2(my'+y‘1)+3y2y':0 = 2z —2y=2xy —3yYy =
" dz dz
, 2z — 2y
2$—2y:y(2m—3y2) = y,:m
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9. diw (z%y + zy?) = % (Bz) = (¥ +y-22)+(z 29y +9*- 1) =3 =

3—2:cy—y2

9 _ 2 r_
2y +2zyy =3 -2y — oy = y(*+2my) =3-20y-y* = o = x? 4 2zy

10.%(y5+z2y3):%(1+yez2> = 5y4y'+(z2~3y2y'—+—y3-2w)=0+y~e’2~2m+e’”2~y' =

2zy (e“r2 - y2)

/e 4 2,2 2%\ _ z? 3 ’_
y(5y +3z7y° —e )—211/6 —2zy =y _-—*_5.7;4-{-31:2?/2—612

11.%(z2y2+wsiny):%(4) = 222 +y* 2c+zcosy-y +siny-1=0 =

—2zy® —siny

22°yy’ +zcosy Y = —20y® —siny = (22%y + x cos Yy = —2zy° —siny = o = 2z2y + T cosy

d d
12. . (1+z)= o [sin(wy2)] = 1= [cos(zy?)|(z - 2uyy’ +y°- 1) = 1=2zycos(zy?)y +y° cos(zy?)

1 — y° cos(zy?)
o= 12 2y = 9 2y = =)
Yy~ cos(zy”) = 2xy cos(zy?)y y 2zy cos(zy?)

d . d . .
13. %(4coszsmy):£(1) = 4[cos:c-cosy-y'+smy~(—sm:z:)]:0 =

, _ 4sinzsiny

y'(4coszcosy) = 4sinzsiny = =
4cosz cosy

=tanztany

d . d .
14. iz [y Sln(mz)] =0 [z sm(yzﬂ = ycos(z?) - 2z + sin(z?) -y = zcos(y?) - 2yy’ + sin(y?) -1 =

sin(y?) — 2zy cos(xz?)
sin(z2) — 2zy cos(y?)

Y [sin(z?) — 2zy cos(y®)] = sin(y?) — 2zy cos(a?) = y =

d 2 d 22
15. o (e’“ y) = (z+y) = Y@l +y-22)=1 +y = xzemzyy’ + 2zye”V = 1 +y =

232y/

2
e Vy —yf =1 - 29:ye"2y = y'(mze’”Qy -1)=1- 2xye’2y = ¢ = 1-2zye” ¥

2
r2e?y — |

d d
Iﬁ.a(\/sWy)zﬁ(lﬂ—z?yz) = %(m+y)_1/2(1+y’)=x2-2yy'+y2-2w =

/

1 Yy 9.2,/ 2
m+2—ﬁ~2x Yot 2yt = 1+y =42’y T F gy + day? Tty =
y'—412y\/x+yy':4:ry2\/z+y—1 = y'(1—4x2y\/a:+y):4$y2\/z+y—1 =
Y = 4zy2\/:c+y -1
1-dx?y/z+y
7. Joy=14+2%y = %(my)‘l/z(zy'—#y-l):0+z2y’+y-21: = d g =22y + 2zy

2,/wyy 27y

y z — 22° /Ty _day/ry—y o oy ey yEr—y
2\ /iy 2. /T3 z— 227 /3y

T
= ’ _ 22 = Y
Y (2\/173/ ’ ) 2y 2Ty
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18.

19.

20.

21

23.

24.

25.

26.

_ Y
1+ z2

(1 +m2) sec?(z —y) - (1 —y') +tan(z —y) - 2z = y =

tan(z — y) = (142 tan(z—y) =y =

(1+2%) sec’(z —y) — (1+ z?)sec’(z —y) -y +2ztan(z —y) =y =
(1+2%) sec?(z — y) + 2ztan(z — y) = [1+ (1 +2%)sec*(@—y)] -y' =

;o (1+ z?) sec’(z — y) + 2z tan(z — y)
1+ (14 z2)sec?(z —y)

oy =cot(zy) = y+ay = —csA(@y)(y+ay) = (y+ay)[l+es@y)]=0 =
y+zy =0 [since 1+ csc’(zy) > 01 = y =-y/z

sinz 4+ cosy = sinxcosy = cosz —siny -y =sinz (—siny-y') + cosycosz =

(Sin$5iny"’5iny)yl:COSJJCOSy—cosa} = y,:c?sa:(c?sy—l)
siny (sinz — 1)

L1+ 7@+ @) ~L0) = @+t @ @)+ FE) 20 =0 1= 1 wehae

FO+12 3P FO+FQP-201)=0 = F+1.3-22 f(1)+2°-2=0 =
F)+12f(1)=-16 = 13f(1)=-16 = fl(y=-%8.

d

d .
e [9(z) + zsing(z)] = L(@?) = d(x)+zcosg(z) g'(z)+ sing(z) -1 = 2z. If z = 1, we have

dz
g'(1)+1cosg(1) - g'(1) +sing(l) = 2(1) = g¢'(1)+cos0-g'(1)+sin0=2 = J+gd1)=2 =
2/()=2 = ¢(1)=1

d
oty tyrt=y+1l > 4y3+<x2-2y+y2-2xj—z>+<y-4m‘°’EZ—+w4-1)=1 =
dx dx dz 1—4@/3-21321/—1:4
90? & s 4g¥y L =1 -4 — 2Py -zt > =
Y dy+ o ydy v TY-T dy 2xy? + 423y

2 2 2
2, ,2)2 2 2, 2 dz dz 2 dr  az® —4y(2® + %)

= = 2 2 — +2y | =2 - - =

(:L' +y) azr’y (m +vy )( :l:dy+ y) ayacdy+aa: = dy ~ 12(® + 7)) — 2azy

24zy+y* =3 = 2w +zy +y-1+2yy =0 = zy +2yy =-2z-y =
—op — _9_1 -
y(z+2y)=—"2z-y = y':—;—i—iyg.Whena:zlandyzl,wehavey’:ﬁ—ﬁ:—?)—?)-———l.so

an equation of the tangent lineisy — 1= —1(z — Nory=-z+2.

24+2ry—yY+r=2 = 2 +2(xy +y-1)—2yy +1=0 = 27y — 29y = 2x—-2y—1 =
_9p — %y —
(e —2y)=-2z-2y—1 = y = 22 32/ ! Whenz = 1andy = 2, we have
T — 2y

, —2-4-1_ T

—2-4-1 =7 3
Y="95"14 ) 2

. L 7 7
= g, so an equation of the tangent line is y — 2= E(m —1)ory = 5%~
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1
2. 27 +y’ = (22" + 2% —2)® > 2242y = 20202 + 2 — x)(dz + 4y — 1). Whenz =0andy = 1, we
have 0 +3y' =2(3)(2y' —1) = ¥ =2y —1 = 3 = 1,50 an equation of the tangent line is

y—3=1z—-0ory=z+3.

/ 3y
2/3 | . 2/3 _ 2, -1/3 2—1/3 _ _ ':—f.Whenzz—Sﬁ
28 273 42—y = z + y=0 = —\/_+——\/_ 0 = y —\3/5
2/3
1 (-3v/3) 3 1 . o
= f= — =- = = —=, so an equation of the tangent line is
and y = 1, we have y (_3\/5)1/3 393 33 3

y-1=J=(z+3V3) ory=Jsr+4

29. 2(z° +y2)2 =25(a” — ) = 4(z® + v?)(2z 4 2yy') = 252z — 2yy') =
4z +yy') (2 + v?) =25z —yy) = dyy' (2 + v?) + 25yy’ = 25z — 4z (z® + ) =

25z — 4z (z® + y°) /_75-120 _ 45 9 ~
' = —<. Whenz =3andy = 1, we have yy/ = = = —13, S0 an equation of the
25y + dy(z2 + y?) y Y = 2%F20 = "6 13

tangent lineisy — 1= —2(z - 3)ory = -2z 4 40,

30. 2 (y* —4) = 22(a® - 5) = ¢t — 4y =z* — 52 = 4’y — 8yy’ = 42° — 10z. When z — 0 and
y=-2wehave =32y + 16y’ =0 = -16y' =0 = ¢ =0.s0an equation of the tangent line is
y+2=0(z—0)ory = —2.

10z® —
Ny’ =5z-22 = 2y’ =5(42°) — 22 = o = % (b) 5
. 10(1)* -1
So at the point (1,2) we have 3/ = —~/_— ~ _ =, and an
point (1,2) y 5 5 (0.2
equation of the tangent lineisy — 2 = 2(z — 1) ory = Jz— 2 - / /\ Jz
-2
s 3 N , 2 ;32 46z :
2. (@’ =23+322 = 2yy’ =32° +3(2z) = ¢ = T So at the point (1, —2) we have
3(1)% +6(1) 9 .
I — = —— 1 1 —_9 — - _9 1
y 2(=2) T and an equation of the tangent line is y+2 ilz—1)ory= 3T+ 5
(b) The curve has a horizontal tangent wherey’ =0 <« (c) 3
32 +62=0 & 3z(z+2) =0 z=0orz = —2. But (~2.2)
note that at z = 0, y = 0 also, so the derivative does not exist. At
T=-2y"=(-2°+3(-2)%= -84+ 12 =4 s0 y = £2. So the
-3 —+ 2

two points at which the curve has a horizontal tangent are (—2, —2)

and (-2, 2). \ A2
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3z% — 6z + 2
33. (a) b) v =
: Oy 2(2y® - 3y* —y+1)

(0,1)and ¢’ = 3 at (0,2).

—\/
<\/3 Equations of the tangent lines are y = —x + 1
HN

= gy =-1lat

5 andy = sz +2.
©y =0 = 322 —6x4+2=0 =
_ 1
— r=1+31V3
There are eight points with horizontal tangents:
four at z ~ 1.57735 and four at z ~ 0.42265.

4
(d) By multiplying the right side of the equation by z — 3, we \
obtain the first graph.
By modifying the equation in other ways, we can generate
the other graphs. - M >

-3
y(y* - 1)y -2)
=z(z —1)(z —2)(z - 3)
4.

3

A e =
gy fj ]

0

-3.5
y(y* —4)(y—2) yy+1(*-1)y-2) (y+1) (¥ -1)(y-2)
=z(x—1)(z —2) =z(x —1)(z —2) =(z—1)(z—2)
| h\j—\/ 4Q/
-3 3 3 N\ . -4 4
— /
3 — _3 —4
zy+1)(y* —1)(y—2) y(y® +1)(y = 2) y(y+1) (v —2)

=y(z - 1)(z—2) :x(m2—1)(m—2) :x(z~1)(m2—2)
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34. (a) 3 (b) There are 9 points with horizontal tangents: 3atz = 0,3 atz = %

and 3 at z = 1. The three horizontal tangents along the top of the
wagon are hard to find, but by limiting the y-range of the graph (to

-3 0 4 (1.6, 1.7], for example) they are distinguishable.

of

35. From Exercise 29, a tangent to the lemniscate will be horizontal if y’ =0 = 25z — 4z (+y*) =0 =

z[25-4(2> +9%)] =0 = 224+4%= 5 (1). (Note that when  is 0, y is also 0, and there is no horizontal
tangent at the origin.) Substituting % for 22 + y* in the equation of the lemniscate, 2(31:2 + y2)2 =25 (wz - -yz),

we get 22 — 9% = 25 (2). Solving (1) and (2), we have z* = Bandy? = 23 50 the four points are (:l:i +32 )

2 2 2
T 2z 2 b . .
36. priny 'Z—z =1 = s ”zTy =0 = y'= ‘aTz = an equation of the tangent line at (zo, yo) is
o= 20 (z — 20). Multiplying both sides by X2 gives Y0¥ _ Y0 _ _Zoz @8 i
Y—yo = = 0)- iplying both sides by 33 gives 75= — 22 = - 2 T Since (o, yo) lies on
2 2
the ellipse, we have + % = %’ + .:g_g =1.
2 2 ’ 2
T 2z 2 b .
37. 2 2‘2 =1 — - y_2y =0 y = 2 = an equation of the tangent line at (zo, yo) is
—yo = 2$0(w—w)Mult'l' both sides by Y0 gives 2 _ Y6 _ 2oz _ 3 o i
YTY = 2 o). Vulliplying both sides by 75 gives 5= — 15 = —% — —2- Since (2o, yo) lies on the

2 2
ToZ Yoy _ T Yo _
hyperbola, wehave-;z——b—2_a—2_b_2_1.
1 I
8. Vz+ > —=4+ 2=
VI +\/y=+/c \/_+2\/_ 0 = ¢ =
v Yo

_VY
VT
Y—%=-"=(x—-x0). Nowz =0 = y=yo—\/—( %0) = Yo + /Zo /Yo, s0 the y-int
VZo NS Yo Yo, so the y-intercept is

= an equation of the tangent line at (o, yo) is

yO"‘\/x_O\/y_O-A“dy:O = —Yo=- \/—(x—wo) = z—zozm
Vo Vo

Z = Zo + /o /Yo, so the z-intercept is zo + 1/Zg /Yo. The sum of the intercepts is
(W0 V&0 VIR) + (w0 + /30 V) = 20 + 2B VB + 0 = (vE5 + Vi)’ = () = e

39. If the circle has radius r, its equation is z2 + V=1 = 2+2y =0 = Yy = —%, so the slope of the

. .z
tangent line at P(zo, yo) is ——2. The negative reciprocal of that slope is
Yo —Zo/yo

OP, s0 the tangent line at P is perpendicular to the radius OP.

=—, which is the slope of
Z'O
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, pmp_l pxp—ly pxp—lmp/q

0. y'=z" = gy =p"' = ¢ = = = — Pw/o-1
qya! qy? qzP q
_ 1 d 1 1
Ny=tantyz = ¥V=—r—mn= —(7T)= (l —1/2):
1+ (vz)? dm(\/_) 1+z \2° 2vz(1+z)
4.y = Vtan~lz = (tan"'2)Y/? =
_ _ d _ 1 1 1
r_ 1 1,3-1/2 1
y = Htan~ )2 L (tan1z) = R
2 dz 2vtan-lz 1+2?  2vian Tz (14 z2)

43. y =sin '2xr+1) =
, 1 d 1 2 1
Y =———02z+1) = .2 = —
V1-(2z+1)2 dz V1-(4z% + 4z +1) V—4z? -4z -z -z

4. h(z) = V1 —-z2arcsinz =

1 .
W(z) = VI= @ - +arcsinz[3(1 - 2%) "2 (-20)| =1~ T—>
(z) z \/1__?+arcs1nm s(1—2%) "5 (-2z)| =1 Vi
1
45. H(z) = (1 +2?) arctanz = H'(z) = (1+2?) T2 + (arctanz)(2z) = 1 + 2z arctanz
%.y:tan_l(m—\/mz-{—l) =
Y = 1 (1_ x >: 1 (\/1:2—{-1—7;)
1+(ac—\/gcTﬁ)2 z?+1 1+22-2cVa? +14+22+1\ Ve +1
_ V2 +1l—=x _ V2+1l—=x
21 +22 —zvVa?+1) Va2 +1 2[Va? + 1(1+a2) — z(a? + 1))

Vz2+1l—z 1

T2 +e?)(VaZ+l-gx)]  2(1+2?)

)
47. h(t) = cot™}(t) + cot T (1/t) =

, 1 1 d1 1 t? 1 1 1
1+ 1+ (1/0)% dtt  1+t2 t2+1 2 1+ 241
Note that this makes sense because h(t):gfort>0and h(t):——;E fort < 0.

1

_ 1. A3 b-1. x T -
48. y =xcos z—V1l—-z* = y =cos T m—k\/l__?—cos T

, 1 2e2*

_ —1(,2¢ - _ L2 (02 = ——
49. y = cos ' (e*) = y = ) o (e*®) —
’ 1 . sin 6
50. y = arctan(cosf) = y = T (cos 0 (—sinf) = — T+ oo 6
51. f(z) = e® — 2’ arctanz = 10
1
fl(x) =€" — [q;2 ( T m2> + (arctan m)(?m)]
. z? f
=e f1+x272marctan:c _2L/ JB
This is reasonable because the graphs show that f is increasing when f' is f

positive, and f' is zero when f has a minimum.
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52. f(z) = zarcsin(l — 2%) = 2
f
_ -2 N/
fllz)y=2z % + arcsin (1 — 2?) - 1 V2
1—-(1-x2)?
7
202
= arcsin (1 — 2%) — o

2z2 — x4 5

This is reasonable because the graphs show that f is increasing when f’ is positive, and that f has an inflection

point when f’ changes from increasing to decreasing .

. d
53.Lety:cos_lw.Thencosy:mandOSySﬂ' = —smyﬁzl =

@:—.1 =- L S . (Note thatsiny > 0for0 <y < 7.
dz siny V/1—cos?y V1 —z2

54. (a) Lety = sec” ' 2. Thensecy = zand y € (0, %] U (m, 22]. Differentiate with respect to z:

VY \dz) T dz  secytany secy/sec?y —1 zvz2 -1

tan’y =sec’y —1 = tany= Vsec?y — Lsince tany > Owhen 0 <y < Zorm <y < 32,

. Note that

M y=sec'z = secy=z = secytan £i—gizl = i212; Now
v= v= vy e dx  secytany’
tanzy:seczy—1:xz—l,sotany::i:\/:cz—1.Fory€[O,g),zz1,305ecy:x=|g;|and
dy 1 1
tany >0 = — = = .Forye (3,7],z < —-1,s50|z| = —z and
V= dz  zv2Z-1 |z|va2 -1 y€ (5.7] ||
d 1 1 1 1
tany = —/z2 -1 = Y _ =

dz ~ secytany 2(—v22-1) (-z)VaZ-1 |e|v2-1

85. 22 +y® = 3and © = y? intersect when 22° + 7 — 3 =0« (22+3)(z-1)=0 & z=-3orl,but
—3$ is extraneous since z = y? is nonnegative. When z = L1=y* = y=21, 50 there are two points of
intersection: (1,+1). 222 4+32 =3 = 4z + 2y =0 = ¢y =-2z/yandr=y> = 1= 2yy =
¥ =1/(2y). At (1,1), the slopes are m; = —2(1)/1=-2andmy =1/(2-1) = 1, so the curves are orthogonal

(since m; and m; are negative reciprocals of each other). By symmetry, the curves are also orthogonal at (1,-1).

86. 2% — y® = 5 and 42> + 9y2 = 72 intersect when 422 +9(2*-5) =72 o 1322=117 & z-— +3. 50
there are four points of intersection: (+3, +2). 22—y =5 = 92z— 2yy' =0 = ¢ =z/y and
4z? 4+ 9y2 =72 = 8z+18yy’' =0 < y = —4x/9y. At (3, 2), the slopes are m; = g andmy = —2. 50

the curves are orthogonal. By symmetry, the curves are also orthogonal at (3, —2), (—3,2) and (-3, -2).
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57.

59.

60.

61.

62.

58. The orthogonal family represents the direction of
the wind.

22 + y? = r? is a circle with center O and az + by = 0 is a line through O. y
?+y?=r* = 2z+2yy’ =0 = ¢ = —z/y,sotheslope of the tangent

line at Po (2o, o) is —o/yo. The slope of the line O Py is yo/zo, which is the

negative reciprocal of —zo/yo. Hence, the curves are orthogonal, and the families

of curves are orthogonal trajectories of each other.

The circles 22 + y* = az and z* + y* = by intersect at the origin where the y
tangents are vertical and horizontal. If (o, yo) is the other point of intersection, /g
then 22 + y2 = azo (1) and z3 + y& = byo (2). Now 2+yt=az =

a—2x

2+ =a = Yy = andz’+y2=by =

2w +2yy =by = Yy = -b—2w—2— Thus, the curves are orthogonal at
-4y
-2 b—2
(z0,30) & a- o _ _ Yo o 2azo —4zd =4k —2bye &

2yo 20
axo + byo = Q(z% + yg). which is true by (1) and (2).

y=cz® = y’=2czcand:c2+2y2:k = 2c+4yy’ =0 = y
, , T T 1
= - - = _—"— = ——— sothecurves are
2y T =Y 2(y) 2(cz?) 2cz’
orthogonal. x

y=az® = y':3ax23ndz2+3y2:b = 2x4+6yy’ =0 =

T x 1
Jyy = -z = y = —m = _W_) = Yt so the curves are

orthogonal.
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63. To find the points at which the ellipse 2® — zy + y* = 3 crosses the z-axis, let y = 0 and solve for z.

64.

65.

66.

y=0 = 2> -z(0)+0>=3 < =z ==+3. Sothe graph of the ellipse crosses the z-axis at the points

(i\/g, 0). Using implicit differentiation to find y/, we get 2z — 2y’ —y + 2y’ =0 = ¢'(y—z)=y—2z

., y-—2x , 0-2v3 , 0+2v3
= .S at (v/3,0) is —————— = 2and ¢’ at (—/3,0) is ——~"_ — 2. Thus, the tangent
& Y=gy Sova(V0) 200) — V3 vt ( ) 200)+ V3
lines at these points are parallel.
o L. , yY—2x .
(a) We use implicit differentiation to find y’ = Wz as in Exercise 63. (b) 5
. . 1-2(-1) 3
— =——— == =1,
The slope of the tangent line at (—1,1) is m O E I CL
1 . L

so the slope of the normal line is = —1, and its equation is -2 / 2

y—1=-1z+1) & y= —z Substituting —z for y in the

equation of the ellipse, we get z° — z(—z) 4+ (-z)2 =3 = k’/

32 =3 & z =+1.So the normal line must intersect the ellipse -2

again at z = 1, and since the equation of the line is y = —z, the other

point of intersection must be (1, —1).
Py +oy=2 = 222 +® U+z-y+y-1=0 o Y(22ly+z) = 22—y &

P 2zt 4y 2zy° +y

= - — =1 2 =
Y 2%yt o So — 2%y T o & 2ty +y=2y+z © yzy+1)=z(2zy+1)
YRry+1) —z(22y+1)=0 & (Qzy+1)(y-2)=0 o zy=—%ory =z Butzy = -z =

2?y® + oy =1 — 1 £ 2,50 we must have & = y. Then PP try=2 = 2'+1°=2 o
' 42’ -2=0 & (22+2)(z®-1)=0. Soz? = —2, which is impossible, or 22 = 1 & gz — +1.

Since z = y, the points on the curve where the tangent line has a slope of —1 are (—1,—1) and (1, 1).

?+4y° =36 = 20+8yy =0 = y = —4—2. Let (a, b) be a point on z* + 4y* = 36 whose tangent line
passes through (12, 3). The tangent line is then y — 3 = —%) (z—12),s0b -3 = —4% (@ — 12). Multiplying
both sides by 4b gives 4b°> — 12b = —a? + 124, s0 4b% + ¢2 — 12(a + b). But 4b° + a® = 36,50 36 = 12(a + b)
= a+b=3 = b=3-a. Substituting3 — q for b into a2 + 4b2 = 36 gives a® + 4(3 — a)? = 36

& a’+36—-2a+4a2 =36 < 5a° ~24a =0 < a(5a —24) =0,s0a =0o0ra = ﬁ dfa=0,

b=3-0=3.andifa=2p=3-2 - _2 g, the two points on the ellipse are (0, 3) and (24, -2).

Usingy — 3 = —i(x — 12) with (a,b) = (0 3) gives us the

3 5 y
4b y ; (o 3) (12,3)

Il
w

tangent line y — 3 = 0 or y = 3. With (a, b) = (%, -2). we have KZ \ /
24/5 ' '
y—3:—m(a:~l2) o4 y—3:§(1‘—12) o4 KO_ (24 9)
575

Y= %x — 5. A graph of the ellipse and the tangent lines confirms

y= 2x-5 )
our results. 3/
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67. (a) If y = f~!(z), then f(y) = z. Differentiating implicitly with respect to z and remembering that y is a function

68.

69.

dy 1 Y . 1
dz — f'(y) = (f ) (w)*m

®) f4)=5 = f7E)=4Bypan@. (/7)) =1/f(fE) =1/ 1@ =1/(3) =3

(@) f(z) =2z +cosz = f'(z) =2 —sinz > 0forall z. Thus, f is increasing for all z and is therefore
one-to-one.

(b) Since f is one-to-one, f~*(1) =k <« f(k) = 1. By inspection, we see that f(0) = 2(0) + cos0 = 1, so
k=f"1)=0.

© (F7)' (W) =1/f(f71(1) =1/f(0) = 1/(2 ~sin0) = 3
2?44y =5 = 20+4Q2p)=0 = ¢y = ~4ﬁy. Now let A be the height of the lamp, and let (a, b) be the

point of tangency of the line passing through the points (3, k) and (=5, 0). This line has slope

(h —0)/[3 — (—5)] = &h. But the slope of the tangent line through the point (a, b) can be expressed as y' = —%,

b-0 b . :
a_—_(——S)_ =73 [since the line passes through (—5,0) and (a, b)], so -—4%) == _I:_ :

4% = —a? —Ba < a® + 4b® = —5a. But a® 4 4b® = 5 [since (a, b) is on the ellipse], s0 5 = —5a &

or as

a— —1. Then4b® = —a® —5a=—-1—5(-1)=4 = b= 1,since the point is on the top half of the ellipse.

h b 1 1
S - = = —_— = = = 2. 1 H _ayi
oS T oIs - 145 4 = h = 2. So the lamp is located 2 units above the z-axis.

3.7 Higher Derivatives

1.

5.
6.
1.

a=f,b=f,c= f". We can see this because where a has a horizontal tangent, b = 0, and where b has a
horizontal tangent, ¢ = 0. We can immediately see that ¢ can be neither f nor f’, since at the points where ¢ has a
horizontal tangent, neither a nor b is equal to 0.

. Where d has horizontal tangents, only ¢ is 0, so d’ = c. ¢ has negative tangents for z < 0 and b is the only graph

that is negative for z < 0, so ¢’ = b. b has positive tangents on R (except at z = 0), and the only graph that is
positive on the same domain is a, so b" = a. We conclude thatd = f.c= f'.b=f",anda = f".

. We can immediately see that a is the graph of the acceleration function, since at the points where a has a horizontal

tangent, neither ¢ nor b is equal to 0. Next, we note that a = 0 at the point where b has a horizontal tangent, so b
must be the graph of the velocity function, and hence, b = a. We conclude that c is the graph of the position

function.

. a must be the jerk since none of the graphs are 0 at its high and low points. a is O where b has a maximum, SO

b = a. bis 0 where ¢ has a maximum, so ¢’ = b. We conclude that d is the position function, ¢ is the velocity, bis

the acceleration, and a is the jerk.

f(z)=2°+62°> — Tz = f'(z) =5z +12c -7 = f"(z) = 202> + 12
)=t T8 26t = f(t) =8t - 4265 + 885 =  f(t) = 56t° — 210t* + 24>
y=cos20 = y = —2sin20 = y" = —4cos20

8. y=0sinf = y =0cosf+sinfd = y":0(—sin0)+cost9-1+cos(9:2c050f95in9
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9. F(t)=(1-7)° = F'(t)=6(1-7)°-7)=-421-7t)° =

F"(t) = —42 - 5(1 — 7t)*(=7) = 1470(1 — 7¢t)*

2c+1 (1‘“1)(2)_(2”3"”1)(1)4217—2_2‘T—1: -3 —3(z—1)72
10. 9(z) = —— 9'(z) = (@ 1) T (z—-1)2 @-1n2 * =0
" -3 -3 —-.6
& 9@ =32 -1 =617 o
1-du = A3 —(1-d)(3) _ 4-12u-3+12u -7
1. h(u) = 1530 W (u) = (1 + 3u)2 - (14 3u)? (1+ 3u)?
_ 42

~7(1+3u)"? = A(u) = —7(—2)(1 + 3u)"3(3) = 42(1 + 3u)"® or e
12. H(s) :a\/§+i8 =as*?4bs7Y? =

H'(s) =a-3s71/? +b(—%s‘3/2) =1as7V? - 1ps73/2 o

H'(s) = %a(~%s‘3/2) b (—%3*5/2) —las™3/2 4 3ps—o/2

ey _ L2 -1/2 _ z
Bh@) = VaTHT = K@) = 5@+ )7 ®) = o= o
N G b b i o B i R e O

Hs Yok - @+ G

B y=2e = ¢y =zx.¢%.c+e”*.1 =e“(cc+1) =
"=eT(e)+(cx+1)e c=ce(1+cz+1)= ce*(cx + 2)

15.y=(z*+1)¥° = o = 2(z® + 1)—1/3 (32%) = 22%(z® +1)"1/3 =

¥’ =22 (1) (2% +1)"Y3(32?) + (a3 + )73 (4z) = dz(a® + 1)~/ - 2z(23 +1)~4/3

4z

16. y = =

4 vz+1

y = Vetl-4-de-3(e+1)"? 4z ¥1-2/VaF1 _Ae+1) -2z 20+4 N

(Va+1)*

Tz+1

(z +1)%?
_ @+ )22z +1) - 3(z + 2)]

J = (z+1)%2.2— 2z +4) - 3(z + 1)1/

_2x4+2-3zx-6

(e +1)72)

—x—4

(z + 1)5/2

CESEE

17. H(t) = tan3t = H'(t) = 3sec?3t =

H"(t) =2 3sec3t dilt (sec3t) = 6sec 3t (3sec 3t tan 3t) = 18 sec? 3t tan 3¢

18. g(s) = s®cos s

= g'(s) = 2scoss — s%sins

=

(z4+1)3

g"(s) =2coss — 2ssins — 2ssin s — s coss = (2 - 32) Ccoss — 4ssin s

19. g(t) = 2> = g/(t) =135 . 5+ €5t . 312 — 2% (5t +3) =

g"(t) = (2t)e®* (5t + 3) + t%(5€%) (5t + 3) + t2e5(5)

= te® [2(5t + 3) + 5¢(5¢ + 3) + 5t] = te> (25t + 30t + 6)

B (z+ 1)3/2
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_ 1 2x
20. h(z) = tan"Y(z?) = HA'(z) = .2z =
(@) ( ) (@) 1+ (x2)? ’ 1+ z4
vy (1420 = @) _ 2
(1+a4)° (1+24)?

2. (a) f(z) = 2cosz +sin*z = f'(z) =2(—sinz) + 2sinz (cosz) = sin2z — 2sinz =
f"(z) = 2cos2z — 2 cosz = 2(cos 2z — cos )

(b)

We can see that our answers are plausible, since f has horizontal

tangents where f'(z) = 0, and f’ has horizontal tangents where

f'(z)=0.

2 @) f@) =€ -2 = f(z)=€¢-32> = f'(x)=e" —6z

The graphs seem reasonable since f has horizontal tangents where f

is zero, f' is positive where f is increasing, and f’ is negative where

£ is decreasing; and the same relationships exist between f' and .

Boy=vIIi=(0+3)"2 = y=102z+3)7V2.2=(+3)7* =
Y = Lz +3)7 2= —(20+3)7Y2 = y=§@Qe+3)"? 2=3(2+ 3)~%/?
2;2_ 1 y' = (2o —(2112)(_1)1)2“2) = (2z _11)2 or —1(2z-1)"% =
Y =—1(-2)(2z - 1)3(2) =42z - 1)7° =
¥ = 4(=3)(2z — 1)74(2) = 242z — 1)™* or —24/(2z — 1)*
25. f(t) = tcost = f'(t) =t(—sint) +cost-1 = f"(t) = t(—cost) —sint -1 —sint =
f"(t) = tsint — cost -1 —cost — cost = tsint — 3cost, s f"(0)=0-3=-3.
% g(z) = V5-28 = g¢'(z)=1(6-22)7"%(-2)=-(5- 2z)"Y2 =
g’ (z)=3(5- 22)"3/2(-2) = —(5—22)** = ¢"(z)= 3(5 —22)"%/*(-2) = -3(5 — 2x) %2, s0
g"(2) = —3(1)"%% = -3.
21. f(6) =cot® = f'(0) = —csc20 = f'(0) = —2csch(—cschcoth) = 2csc’fcotd =
F(6) = 2 (—2csc® fcot §) cot 6 + 2csc? 0 (—csc?§) = —2csc? 6 (2 cot? 0 +csc®9) =

17(3) = 22 [2(v3)" + (%] = 80

24 y=

28. g(z) =secz = ¢'(z) =secxtanz =
2
g’ (z) = seczsec® x + tanz (secx tan z) =sec® z + secztan?z = sec® x + secx (sec’ x — 1)
=2sec®z —secx =

g"(z) = 6sec’ z (secz tanz) — secx tanz = secrtan (6 sec’z—1) =
g

///(%) — \/5(1)(62_ 1) = 11\/—2_
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29.92°+y°=9 = 18z+2yy =0 = 2y =-18z = ¢ =-9z/y =

2 2
"_— _g L’jyl =_9 wﬂfl =_9. u’g_m =_9. % [since x and y must satisfy
v y? % Y y

the original equation, 9% + y? = 9]. Thus, 3"’ = —81/¢°.

1 ' .
N VI+G=1 = —=+-2==0 = y=-/GA\zT =

2V 2y
o VECVY - IEVE) | VE(AG) (-VINE) - ViONE) _ 1+\2/g/ﬁ
T a: - 2z -
= \/2E+\/_\/?7 =3 7 since x and y must satisfy the original equation, /z + Vi=1

2

z
N22+yP=1 = 322+3y% =0 = y':——2 =

v YQo) -2 2y 20y’ -2 (—dy?)  2mt+2aty | 2ay(yP 43 2w
T v?)? o vt % % %
since z and y must satisfy the original equation, z® + y% = 1.

Rty =a = 4P+ =0 = ¥y = —4a® = o = -2/ =
/ 4 4 _q.4,.2
J = — ' 32% —a® 3%y ag22 YY) g o y“j: S __3‘171'
(y%)? y® vy y y
B flz)=2" = [f(z)=na""' = f'(z)= nn—-1)z"2% = ... =
f™(z) =n(n—-1)(n- 2)---2- 12" " =l
3. f(z) = le_ 1= Gz-1)"" = fl(z)=-16z-1)"2.5 = f'(z) = (-1)(-2)(5z —1)"% .5 =
@) =(DE)(-3)6Be - 1) 5° = 0 s fM(g) = (~1) ! 57 (52 — 1)~(+D
B flz)=e* = fl(z) =2 = f'(z)=2 2 =2%>* =
f///(z) — 22 . 2629: — 23622 = ... = f(n)(dl) — 211.622

3. fz)=vz =22 > fl(z)= 1712 o
f'(=@) =3

(-3)27 = f(@) = §(-3) (- =
19@) = 3(-3) (-9 (9o = -2 5p72
fO@ =3DEDEN (P =222 e
@ =338+ (3 = 1)amere (L35 @028 uoye

3. f(z) =1/(B2%) = Lz7° = f(z) = 3(=3)z™* = f'(z)= 3(=3)(-4)z~° =
@) =335 = - =
I0@) = 38 () [t plametn - LSS ) 2 ) (g2

3xn+3 6xn+3
38. Dsinz =cosz = D?sinz = —sin z = D3sinc=-cosz = D* sinz = sinz. The derivatives of
sinz occur in a cycle of four. Since 74 = 4(18) + 2, we have D™ sinz = D?sinz = — sin 2.

39. Let f(z) = cosz. Then Df(2x) = 2f'(2z), D* f(2z) = 2*f" (2z), D*f(2z) = 2°f"(2x), ...,
D™ f(2z) = 2" £")(2z). Since the derivatives of cos z occur in a cycle of four, and since 103 = 4(25) + 3, we

have f(1%)(z) = f®(z) = sinz and D% cos 22 — 2108 £(103)(94) = 2103 5 9.
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0. f(z) =z = fl@)=z(-e")+e*=(1-2x)" =
flle)=1—-z)(—e ™) +e *(-1)=(z—-2)e* = f"(@)=(-2)(-e")+e*=0B-2)e " =
fP@=B-z)(-e ") +e (1) =(z-4)e® = - = [P@)=(-)"(z-n)e"
So D'%%%ze~" = (z — 1000)e~".
41. By measuring the slope of the graph of s = f(¢) att = 0, 1, 2, 3, 4, and 5, and using the method of Example 1 in
Section 2.9, we plot the graph of the velocity function v = f’(¢) in the first figure. The acceleration when ¢ = 2 s is
a = f"(2), the slope of the tangent line to the graph of f’ when t = 2. We estimate the slope of this tangent line to

be a(2) = f(2) = v'(2) = & = 9 ft/s*. Similar measurements enable us to graph the acceleration function in the
second figure.

v da
40" v 15.
30+
101 a
20+
104 37
o, 1 S

42. (a) Since we estimate the velocity to be a maximum at ¢ = 10, the acceleration is 0 at t = 10.

v
501 a
1..
20
251 "
0 | 1(\/ t
0 10 20 !

(b) Drawing a tangent line at t = 10 on the graph of a, a appears to decrease by 10 ft/ s2 over a period of 20 s. So at
¢ = 10's, the jerk is approximately —10/20 = —0.5 (ft/s?)/s or ft/s3.
8. (a)s =265 — 152 +36t+2 = w(t)=5(t)=6"-30t+36 = a(t)= v'(t) = 12t — 30
(b) a(1) =12-1-30 = —18 m/s’
(©) v(t) = 6(t* — 5t + 6) = 6(t — 2)(t — 3) = O whent = 2 or 3 and a(2) = 24 — 30 = —6 m/s?,
a(3) = 36 — 30 = 6 m/s’.
M. (a)s =22 3212t = w(t)=s(t)=6t>-6t—12 = a(t)= V'(t) =12t — 6
(b) a(l) =12 1-6=6m/s’
() v(t) = 6(t* —t —2) =6(t +1)(t —2) = Owhent = —1or2. Sincet > 0,t# —1and
) =

a(2)=24-6=18 m/s>.
45. (a) s = sin(%t) +cos (% t),0<t <2 v(t) =§'(t) = cos(% t)- % sin(%t) CE = %[cos(%t) - sin(%t)]
= a(t) =v(t) = E[-sin(%t) - § —cos(§t) - §] = f—6 [sin(%t) + cos(%1)]

(b) a(l) = —% [sin(Z - 1) +cos(F - 1)] = _56 [5 —‘2[—] = 12- (14 V3) =~ —0.3745 m/s*
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2\ _ o (E _ sin(Ft)
(©v(t)=0for0<t<2 = cos(it) =sin(3t) = 1= cos(Z1)
tan(§t) =1 = Zt=tan"'1 = t=2%.2 =23 =155 Thus,
2

. - 2 \/5 \/5 ? ~ 2
o) =G5 bin(s ) +eon(3 9] = 35 [T+ 5 | = -ovEx 0asTTms

86. () s =2° —T? +4t+1 = o(t)=s(t) =61 —14t+4 = a(t)=0'(t) =12t — 14
(b) a(1l) =12 — 14 = -2 m/s? '
©v(t) =2(3t" — 7t +2) =2(3t — 1)(t —2) =Owhent = L or2and a(}) = 12(1) — 14 = 10 m/s2,
a(2) =12(2) — 14 = 10 m/s>.
4. @s(t) =t 4 +2 = o) =5'(t) =4~ 122 = a(t) = v/(t) = 12> — 24t = 12¢(t — 2) = 0
whent = 0or 2.
(b) s(0) =2m, v(0) =0m/s, s(2) = —14 m, v(2) = =16 m/s

8. () s(t) =2t -9 = v(t)=5'(t)=6t2— 18t = a(t) =0 (t) =12t — 18 = O whent — 1.5.
(b) 5(1.5) = —13.5m, v(1.5) = —13.5m/s

8. @ s=f(t) =112 +36t,t >0 = o(t) = f(t) = 3t> — 24t + 36.
a(t) = v'(t) = 6t — 24. a(3) = 6(3) — 24 = —6 (m/s) /s or m/s.

(b) (c) The particle is speeding up when v and @ have the
same sign. This occurs when 2 < ¢ < 4 and when

t > 6. Itis slowing down when v and a have opposite

signs; that is, when 0 < ¢ < 2 and when 4 < ¢ < 6.

t 14 t%)(1) — (2t 1-¢2
50.(a)m()=—2 = v(t)za:’(t)z( )()2( )= 5.
1+¢ (1+1¢2) (1+1¢2)
2t(t* — 3)
at) =v'(t) = ——=".a(t) =0 = 2(t*-3)=0 = t=00r/3
®) =v'(0) = T al®) (t* -3) V3
(b) 15 (c) v and a have the same sign and the particle is
J N speeding up when 1 < t < /3. The particle is
0 —~— 4 slowing down and v and a have opposite signs when
? (a J 0 <t < 1andwhent > +/3.

51. @) y(t) = Asinwt = o(t) = y'(t) = Awcoswt = a(t) =v'(t) = —Aw? sinwt
(b) a(t) = —Aw? sinwt = —w?(Asinwt) = —w?y(t), so a(t) is proportional to y(t).

(c) speed = |v(t)| = Aw |coswt| is a maximum when cos wt — +1. But when coswt = %1, we have sinwt = 0,
and a(t) = —Aw?sinwt = —Aw?(0) = 0.
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dv dvds dv

52. By the Chain Rule, a(t) = H o dsdt ds v(t) = v(t) % The derivative dv/dt is the rate of change of the

55.

56.

51.

58.

59.

60.

61.

velocity with respect to time (in other words, the acceleration) whereas the derivative dv/ds is the rate of change of
the velocity with respect to the displacement.

. Let P(z) = az® + bz + c. Then P'(z) = 2az + band P"(z) =2a. P"(2) =2 = 2a=2 = a=1

P'(2)=3 = 2(1)2)+b=3 = 4+b=3 = b=-L
P(2)=5 = 12°%+(-1)2)+c=5 = 2+c=5 = c=3.SoP(z)=2"-z+3.

. Let Q(z) = az® + baz? + cz + d. Then Q' (z) = 3az® + 2bz + ¢, Q"(z) = 6az + 2b and Q"' (z) = 6a. Thus,

Q)=a+b+c+d=1,Q (1)=3a+2b+c=3Q"(1) =6a+2b=6and Q"(1) = 6a = 12. Solving
these four equations in four unknowns a, b, cand d we geta = 2, b= —3,c =3 and d = —1. s0
Q(z) = 22 — 32> + 3z — 1.
y=Asinz+ Bcosz = y =Acosz— Bsinz = y’ = —Asinz— Bcosz. Substituting into
y" +9y' — 2y = sinz gives us (—3A — B)sinz + (A — 3B) cos & = 1sinz, so we must have -3A-B=1
and A — 3B = 0. Solving for A and B, we add the first equation to three times the second to get B = —%
__23
and A= —10°
y=Az>+Bz+C = y =24z+B = 1y’ =2A Wesubstitute these expressions into the equation
y' +vy — 2y =z to get
(24) + (24z + B) — 2(Az® + Bz + C) =2
94 + 2Az + B — 2Az® — 2Bz — 2C =1°
(—24)2% + (24 — 2B)z + (2A+ B — 2C) = (1)z” + (0)z + (0)
The coefficients of z2 on each side must be equal, so —2A =1 = A= —%. Similarly, 2A —2B =0 =
A=B=-1and24+B-20=0 = -1-}-20=0 = C=-}
y = r:z = yl — ,r,erz = yll — 1,,261‘17 S0
y" + 5y — 6y =712 +bre’” — 6" =€ (r’+5r—6) =€ (r+6)(r-1)=0 =
(r+6)(r—1)=0 = r=1or—6.
y=e" = y = AN =y =A% Thus,y+y =y & e 4 e = N2 &
AT -A-1)=0 & =158 sincee’ #0.
f(z) =xg(@®) = f(@)=z ¢ (") 2w+g(z*) 1= g(z®) +22%¢' (%) =
f(z) = ¢'(¢*) - 2z + 227 g"(z?) 2z + g (2%) 4z = 6zg (z2) + 4z°g" (z%)

() . f'(x)zw

fla) = £ I8 o

() = 2[9 (z) + zg" (2) _glg(;)] —2z[zg'(z) — g(@)] _ 2°9"(2) —222’(:5) +29()
flo) = ayE) = 11 m)~g<f> o2 = L)

" 2vz-g"(Va) 3 —g(vz) 2-327? 2P Vag"(VE) — g (Vo)
(@) = 2\/—)2 - 4z

_ VEd'(Vz) - d'(VZ)
- 4z /T
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62. 25 f(z) =32°-102* +5 = f(z)=15z" — 302> =
{ £ f"(z) = 60z° — 60z = 60z(z® — 1) = 60z(z + 1)(z — 1)
f So f(z) > 0 when —1 < 2 < O or z > 1, and on these intervals the
_2 SN 5 f(z)
graph of f lies above its tangent lines; and f”/(z) < 0 when z < —1
or 0 < z < 1. and on these intervals the graph of f lies below its
—25 tangent lines.
1 - (2z+1)
63. = = ()= 22T )
@@= = W=
() = (z* + x)2(—2) + (22 +1)(2)(2* + z) (22 + 1) _ 2(32° 4+ 3z +1)
(z2 + z)* (z2 +z)°
iy = @t 2)*(2)(62 + 3) — 2(32% + 3z + 1)(3)(2® + z) *(2z + 1)
(22 +2)°
_ —6(42® +62° + 4z +1)
(z? +2)*
F9(z) = (22 +2)*(~6)(122% + 12z + 4) +6(4° + 62° + 4z +1)(4) (2* + 2)* (22 + 1)
(2 +2)°
_ 24(52" +102° 4 102° + 5z + 1)
(22 + z)°
FO(z) ="
1 1 1
(b) f(z) = PEES IR F@)=-2+@+1)7? = f@)=223-22+1)° =
1@ =@+ H@AE+ D™ > 5 fOa) = (1) [ - (g 1))
7. 1 - 4 3 _ 2
64 (a) FOI' f(:l‘) = “21‘2 m__;mz 4, a CAS gives us f”/(.’L‘) — 6(5653 + 544.1: - 21841,‘ + 61841’ — 6139)
(222 — Tz — 4)4
. T 417 -3 5
(b) Using a CAS we get f(z) = %7 7z 1 25t 1 + p—t Now we differentiate three times to obtain
(@) = 144 30

2z +1)*  (z—4)%

65. For f(x) = z%¢®, f'(z) = z%e® + e*(2z) = * (2 + 2z). Similarly, we have
() = e (2 + 4o + 2)
f"(z) = e*(z* + 6z + 6)
FP (@) = e (
@) =e® (2% 4+ 10z + 20)
It appears that the coefficient of z in the quadratic term increases by 2 with each differentiation. The pattern for the
constant terms seemstobe 0 =1-0,2=2-1,6=3-2.12 =4 . 3,20 =5 4. So a reasonable guess is that
™ (z) = e [#* + 2nz + n(n — 1)].
Proof: Let Sy, be the statement that £(™) (z) =e"[2® +2nz +n(n - 1)].

z% + 8z + 12)

1. S1 is true because f(z) = e®(z? + 2z).
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2. Assume that Sy, is true; that is, f*)(z) = €®[2® + 2kz + k (k — 1)]. Then
FE 0 @) = L [19(z)] = (2 + 2K) + [ + 2ha + k(e — D] "
=e"[2° + (2k +2)z + (K> + k)] = " [2° + 2(k + D)z + (k + 1)k]

This shows that Sk41 is true.
3. Therefore, by mathematical induction, S, is true for all n; that is, f(™ (z) = €” [¢® + 2nz + n(n — 1)] for

every positive integer n.
66. (a) Use the Product Rule repeatedly: F = fg = F' =f'g+fgd =
"= (f"g+ )+ (f'g+f9")=f"g+2fd + fd".
() P = f"g+ 19 + 25 + §'a") + 1'9" + 1g" = g+ 31" +3'd" + fg" =
FO = (04 g +3(5"g'+ £'g") + 35"+ £19") + " + o
= fWgt+af"g +6f'g" +4f'g" + fg¥

(c) By analogy with the Binomial Theorem, we make the guess:

F(n) f(") +nf('”' 1)9 + (Z‘) f("_Q)g" + -+ (Z) f('"'_k)g(k) 4+ .- +nf’g(”_1) + fg(n)

n\ n! n(n—l)(n—2) ‘(n—k+1)
where { & | = %i(n — k! K ‘

. dy dydu
67. The Chain Rule says that dr — duds )

dy_d (dy) _ 4 (dydu)_ d dy)] du \ dy 4 (4-9) [Product Rule]
dz? dz \dz dz \ du dzx du dr dudz \dz

b dyd _.dz_y au\?  dy

{ ) du dz?
5‘__
du?

] dudcc2 du? \ dx

2
(du> L Wdu
Py _ddy _ d[dy (du)?|  d [dydu
dz3  dzdz?  dz | du? \dz dz | du dz?
du\? d
(—m> + \:E (dw) } du? [
du\? . dud®ud’y d
(E&) tld d T [d

d_u>3 dud*udly dyd’u

+
w

dz dz? du? ' du da®
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69. We will show that for each positive integer n. the nth derivative f™) exists and equals one of f, f', f, £, ... ,
FP~1 Since fP) = f. the first p derivatives of f are FLof ", o, f%7Y and f. In particular, our statement
is true for n = 1. Suppose that k is an integer. k > 1, for which f is k-times differentiable with f(*) in the set
S={f.f.f" ..., f® Y} Since f is p-times differentiable, every member of S [including f*)] is
differentiable, so f**1) exists and equals the derivative of some member of S. Thus, f**+1 is in the set

{1 F7 f", ..., f®}, which equals S since f®) = f. We have shown that the statement is true for n = 1 and
that its truth for n = k implies its truth for n = k + 1. By mathematical induction, the statement is true for all

positive integers n.

APPLIED PROJECT Where Should a Pilot Start Descent?

1. Condition (i) will hold if and only if all of the following four conditions hold:
() P(0)=0
(8) P'(0) = 0 (for a smooth landing)
(v) P'(£) = 0 (since the plane is cruising horizontally when it begins its descent)
(6) P(£) = h.
First of all, condition o implies that P(0) = d = 0, so P(z) =az® + bz’ 4 cz = P'(z) = 3az® + 2bz + c.
But P'(0) = ¢ = 0 by condition 3. So P'(£) = 3al® + 2b0 = £ (3al + 2b). Now by condition -,

2b 2b
3al+2b=0 = a=—=. Therefore, P(z) = ——z° + bz?. Setting P(¢) = h for condition &, we get

3¢ 3¢
2% 2
PO=-50+0 =h = 2212 =n = %bﬁ:h = b:% - az_i_f_s(,
% ,  3h
y—P(m)——ﬁ—w3+e—2 2

d*y

.. .. dzx
2. By condition (ii), Y forall ¢, so z (t) = £ — vt. Condition (iii) states that ) < k. By the Chain Rule,

dy dydz 2h .. o dz  3h dr  6hz*v  6hav
/3 ( )_ (2 ) =

we have -2 = 2~ — _2° —= —_— = 7
dt ~ du dt i e P g =g e (orz<d =
d*’y  6hv dr 6hvdx 12hv? 6hv?
55 = 5 (2z) i VT —e—am + = In particular, when t = 0, z = £ and so
d*y 12hv? | 6ho? 6hv? d? 6hv?
pe) . =0 £+ By Thus, Eg - = < k. (This condition also follows from
taking z = 0.) '

3. We substitute k = 860 mi/hZ, h = 35.000 ft x %, and v = 300 mi/h into the result of part (b):

6(35,000 - =21-)(300)> 35,000
<860 = £>3004/6- ————_ ~ 64.5 mi
72 > 5980 - 860 64.5 miles.
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o . . 2h 3h .
4. Substituting the values of k and £ in Problem 3 into P(z) = —73953 + 25332 gives us P(z) = ax® + bz?, where
a~4.937 x 107 and b ~ 4.78 x 1072
7
64.52

APPLIED PROJECT Building a Better Roller Coaster

1. @) f(z) =az® +bz+c = [(zr)=2az+b

The origin is at P : f(0)=0 = c=0
The slope of the ascentis 0.8:  f'(0) =08 = b=0.38
The slope of the drop is —1.6:  f/(100) = —=1.6 = 200a+b=—~1.6
2.4

(b)b=0.8,50200a +b=—-1.6 = 200a+0.8= —-16 = 200a=-24 = a= _i.)ﬁ = —0.012.

Thus, f(z) = —0.0122% + 0.8z.

(c) Since L passes through the origin with slope 0.8, it has equation y = 0.8z. The horizontal distance between P
and Q is 100, so the y-coordinate at Q is f(100) = —0.012(100)* + 0.8(100) = —40. Since Lz passes
through the point (100, —40) and has slope —1.6, it has equation y + 40 = —1.6(z — 100) or
y = —1.6z + 120.

50

L, X o,
P(0,0)

0(100,—-40)

I

150

=50

—100

(d) The difference in elevation between P(0, 0) and Q(100, —40) is 0 — (—40) = 40 feet.

2. (a)
Interval Function First Derivative Second Derivative
(—00,0) Li(z) =0.8z Li(z) =038 Li(z) =0
[0,10) g(z) = kz® + l® + mz +n g (z) = 3kz® + 2z +m g"(z) = 6kx + 21
(10,90] q(z) = az® +bz+c q(z) =2az+b q"(z) =2a
(90, 100] h(z) = pz® + qz° + 7T + 5 B (z) = 3pz® + 2qz + 7 h'(z) = 6px + 29
(100,00) |  La(z) = —1.6z + 120 h(z) = —1.6 Li(z) =0

There are 4 values of z (0, 10, 90, and 100) for which we must make sure the function values are equal, the first




APPLIED PROJECT BUILDING A BETTER ROLLER COASTER O 209

derivative values are equal, and the second derivative values are equal. The third column in the following table
contains the value of each side of the condition — these are found after solving the system in part (b).

Atz = Condition Value Resulting Equation

0 9(0) = L1(0) 0 n=0
g'(0) = L} (0) 2 m=0..8
9"(0) = L{(0) 0 20=0

10 9(10) = ¢(10) g 1000k + 100l + 10m + n = 100a + 10b + ¢
g'(10) = ¢'(10) 2 300k + 20l +m = 20a + b
g"(10) = ¢"(10) - 60k + 21 = 2a

90 h(90) = ¢(90) —220 729,000p 4 8100q + 907 + s = 8100a + 90b + ¢
' (90) = ¢’(90) -2 24,300p + 180g + r = 180a + b
h"(90) = ¢”(90) -Z 540p + 2g = 2a

100 h(100) = L(100) —40 1,000,000p + 10,000g + 1007 + s = —40
R'(100) = L5(100) -2 30,000p + 200 +r = —1.6
R"(100) = L% (100) 0 600p + 29 =0

(b) We can arrange our work in a 12 x 12 matrix as follows.

a b c k l m n p q T ] constant
0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0.8
0 0 0 0 2 0 0 0 0 0 0 0
—100 | —10 [ —1 | 1000 | 100 10 1 0 0 0 0 0
—20 -1 0| 300 20 1 0 0 0 0 0 0
-2 0 0 60 2 0 0 0 0 0 0 0
—8100 | =90 | -1 0 0 0 0 729,000 8100 90 1 0
—180 -1 0 0 0 0 0 24,300 180 1 0 0
-2 0 0 0 0 0 0 540 2 0 0 0
0 0 0 0 0 0 0 | 1,000,000 | 10,000 | 100 1 —40
0 0 0 0 0 0 30,000 200 1 0 —-1.6
0 0 0 0 0 0 0 600 2 0 0 0

Solving the system gives us the formulas for q. g, and h.

a=-0013=-%

9
c=-04= ——%
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k= —0.0004 = — ==

~ 2250

(=0 1,3, 4

)= —=—2x 4
m:O.S:% 9(z) 250t T 57
n=>0
— T _1
q:—0.1§:—1—25

_ 1.3 2,2
r=11.73 = 116 W) = me’ — 57+ 5w~ 5

15
5= 32470 = 220

(c) Graph of L1, g. g, h, and Lo:

The graph of the five functions as a piecewise-defined function:

This is the piecewise-defined function assignment on a TI-83 Plus
calculator, where Yo = L1, Y6 = 9. Ys = ¢, Y7 = h, and
Y3 = Lo.

A comparison of the graphs in part 1(c) and part 2(c):

50

g | (10,68/9)
(0,0) fo--<d
-50 S 150

(90,—220/9\x
(100, —40)

| I

L,

-100

Flotl Flokz Flot2
WasYek(¥<B2
(¥>=A and X<
gk{X¥>18 and
Y 2R (R P98
21802+ (R

Vo=

+4 5%
ax+Yy
w290
nd ¥
188>

20

« Problem 2 ]

/ 110
Problem 1

=50
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3.8 Derivatives of Logarithmic Functions

1. The differentiation formula for logarithmic functions. di (log, z) = - 111 . is simplest when a = e because
x
Ine=1.
1 d 2c
2 =In(z® + 10 "(z) = — (z? =
3. f(0) =In(cost) = f'(0) = 1L d (cosf) = —sinb _ —tan@
cosf df cosf
4 f(z) =cos(lnz) = f(z)= —sin(lnz)- 1_ Zsin(inz)
T T
1 d -3 3
5 f(z) =log,(1—-3z) = -_ —3z) =
fz) = logy(1 - 32) I = agmem 0% A—3z)in2 " Bz _1)in2
1 1 1

6. f(z) =1lo el ):1 ~1 ~1 "(z) = - SN S
/(@) glo(m—l %8107 ~logy(e =1) = f'(a) zIn10 (3lc—l)ln100r z(z —1)In10

z) = VInz = (Inz)'/? '(z) = L(lng) 5L = 1 Lo L
P = Viz =) = £ = ) ne) = gt z " 5o {/(na)
8.f(a:):ln\5/5:lna:1/5:%lnx = f’(w):%~%:%
_ N o 1 N ’L___ Inz  2+Inz
. J@)=vEz = @)= vE (L) +ao v AR R
-
Fy = Eom)A/) - A1) (1/)[0-lmt)+ 1+ my] 9
(1—-1nt)? (1 —1Int)2 Tt - Int)?
3
M. F(t) = In gtﬁ% In(2t +1)° ~In(3¢ — 1)* = 3In(2t + 1) — 4In(3t — 1) =
o IR N 12 . —6(t+3
F)=3- 2t+1 2 s = gy~ groy o combined, (2t+1()(3t31)'

12 h(z) = In(z + 27 —1) =

R R T VR
R | Vz? -1 rt+vVa2-1  Va?-1 21
13.g(w):an;z:ln(a—z)—ln(a+z) =
Ty _—(a—%—x)—(a*z)* —2a
9'(z) = ( 2 a+ac§ (a—z)(a+z) ~ a2—z2
WFly)=yln(l+e') = F(y)=y. T1ev ¢ Th(l+e) 1= I?fiy +1In(1 + )
Inw
15-f(u):m =
F(w) = [1+ln(2u)]-%-lnu~i 2 %[1+1n(2u)—lnu]
[1 + In(2u)]? [+ In2u)P
:1+(ln2—l—lnu)—lnu_ 1+1In2
u[l+n2u)]® " w1 +In(2u)P
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16.yzln(m4sin2m):ln:c4+ln(sinm)2:4lnw+21nsinx = y’=4~l ~COSx:é+200t:1:
T z

T
1 —10z — 1 10z +1
17. y =In|2 — z — 52° - . (=1- —
v n| ‘ w] A A S (=1 - 102) 2—z—52% O bzltaz-2
ute , 1/ 3 3 6
. =1 _— = 5 —1 — = — — =
18. G(u) =In 3u_2 1In(Bu+2) —In(3u —2)] = G'(u) 2(3u+2 r— S —1
1.y = In(e™® +ze ®) =In(e”*(1+2)) = In(e™®) +In(1+2) = -z +n(l+z) =
P 1 *—l—m—}—l_ﬂ T
e L
1 2¢% In(1 + €%)
— z\12 ! z\] . LT —
2. y=[In(1+¢%)]> = y' =2[In(l+e€") T ¢ T4 o
Ny=zlnz = ¢ =z(l/z)+(nz)-1=1+nz = y' ' =1/z
_Inz ,  z(1/z) — (Inz)(2z) _ z(l—2nz) 1-2Inz
2.y= 2 = ¥y = (11:2)2 - 4 - 3
o z(=2/z) - (1 —2Inz)(3z?) *(-2-3+6lnz) 6lnz— 5
¥y = (x3)2 - 6 4
Boy=1 S S WY 6 UGSy G 1) R,
Py =108 = Y T 010 T o \z YV T mio\ e 2210
2
24. y = In(secz + tanz) = y,:sec:ezz;n_::;—;e: L _secz = vy’ =secztanz
T
) - =
B @)= ThEoD
-1 (x-1[l—In(z-1)]+z
, [1—ln(z—1)]-1—w-m_1 z—1 z-1-(z-1)hE-1+z
f'(=) = M In(z— 1) - M—In(z - 1) @_ 1 —In(z - 1))?

B 2z —1—(z—1)In(z — 1)
T (z- D[l —In(z - 1)

Dom(f) ={z|z—1>0 and 1-In(z—1)#0t={z|z>1 and In(z — 1) # 1}
={z|z>1 and c—1#e}={z|z>1 and c#1+e}=(1,1+e)U(l+e00)

1 1/ . _ 1
26. f(z) = T oz = f’(w):—m [Reciprocal Rule] = ———m(1+lnw)2'

Dom(f) = {x |z >0 and Inz#—-1}={z|z>0 and z #1/e} = (0,1/e) U (1/e,00).

2. f(z) =2°In(1—2?) = f'(z) =2z~ z?) + mTz(__i—f) =2zIn(l - 2°) — 12_$z2'
Dom(f) = {z |1-2° >0} = {z| || <1} = (=1, 1).

28. f(z) =lnlnlnz = fll@)=—— 7" =

Dom(f) = {z | Inlnz > 0} ={z|lmz>1}={z|z> e} = (e,00).

ne— Inz—1 , 1-1
2. f(m):m = fl(m):l (lnfv()i/m): (In z)? = fle)= 12 =0

1
30. f(z) =2’lnz = f'(w):2wlnx+:c2(;>:2$lnw+m = f(1)=2mhl1+1=1
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Ny=f(zx)=lnlnz = f[f'(z)= ﬁ (i) = flle) = %, $0 an equation of the tangent line at (e, 0) is

1
y—O:l(m—e),ory:;m—l,orz—ey:e.
e

msl_ 5 322 = y'(2) = % = 12, 50 an equation of a tangent line at (2, 0) is

y—0=12(z —2) or y = 12z — 24.

2.y=In@*-7) = ¢ =

B. f(z) =sinz+Inz = f'(z) = cosz + 1/z. This is reasonable,

because the graph shows that f increases when f’ is positive, and

f'(z) = 0 when f has a horizontal tangent.

_Ing ,_z(l/r)—lnz 1-Inz 2

4.y= - = y = o = (_ )
1-0 1-1

y'(1) = 7z = land y'(e) = -z =0 = equations of

tangent linesarey — 0 = 1(z — 1) ory =z — 1 and

y—1/e=0(x—e)ory =1/e.

B.y=(20+1)°2"—3)° = lny:ln((2m+1)5(x4—3)6) =

1, 1

Zy=5.— .9 .

yy 2z +1 . x4
10

, 10 24.7;3) 6 2423
y = +—=)=2z+1)°%(z*-3 ==
y< — 2z +1)%(z )<2m+1+$4_3>.

lny:5ln(2m+1)+6ln(a:4—3) = ! 3~4x3 =

241  z4-3
[The answer could be simplified to y' = 2(2z + 1) (z* - 3)5(29:134 +122° — 15), but this is unnecessary.

2
%.y=vze” (22+1)° = lny=ln\/5-f—lnez2-I—ln(:zc2+1)10 = Iny=jlnz+z’+10In(2® +1)
1

, 11 1 2 o/ 1 20
ey ==.249 10 - . ! — =7 (2 of — z
V=g gt o 2z = Y =Vze (2 +1) (2x+2x+x2+1)

sin z tan?z
37.y= W = Iny=In(sin®z tan* z) — ln(:c2 + 1)2 =

Iny =In(sinz)® + In(tanz)* — In(z*+1)> = hy=2h Isinz| + 4 In|tanz| - 2 In(«? + 1) =
1

’
~y =2 — . COS 4. .sec’r — 9. .
yy e T+ tanz sec’z — 2 1 2r =
Y = sin? z tan;lac <2cotz+ 4sec’ 4z
(z2 +1) tanz 2 +1
V)
1
38y = 4Tt = hhy=3imn(z?+1 Lin(z? -1 L ! L 1
== —_—= —_ :> —_— = - . . —_—— e ——
22 1 1ln( ) = 11n( ) WSl 1 21 % =
z

y,:4z2+1.1 T oz :l4z2+1 -2z \ dJz?+1
22 -1 2\ax24+1 22_1 2Va2-1\zt-1) 122 Vz2_1

y=2" = hy=Inz® = Iny=zlnz = y’/y:m(l/z)+(lnx)~l =
¥Y=y(l+hz) = Y =2°(1+Inz)
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1 '
40.y:.1:1/z - lny:;ln.’v = %:i(i)-{—(lnz)(—%) = y/:zl/xl—in:v
T

sin sin . !
N y=1o° = lny=Inx = Iny=sinzlhz = %Z(Sin$)~l+(lnx)(cosa:) =
T

sinx . i
y'=y< - +ln:ccosw) = y'zmsmz(%zﬂ-lnxcosm)

/

: z . 1
42. y = (sinz)® = Iny=zl(sinz) = Zl=$-Sinw-cosm+[ln(sinw)]‘1 =

y' = (sinz)” [z cot z + In(sin )]

43. y = (Inz)®* = hy=In(lnz)® = Iny=zlnlhz = =.7:A—-1+(1nlnw)-1 =
z

e ' — (Inz)* | ——
y —y(mlnw—l—lnlnx) = vy =(lnx) (lnz+lnln:p>

!
44, y =z'"* = Iny=Inzlnz = (Inz)> = y—:21nz<l> = y':x‘“’”(mnw)
Y z T
« y 1 @ 1
45.y=2° = Ilny=e"lnz = ;:e“’-;—}—(lnw)ex = y =z ez(lnw-i-—)
T

/

8. y = (Inz)*** = Iny = coszin(lnz) = %=cosa:-%a—c-%+(lnlnx)(-sinx) =

y = (Inz)">" (icls_:v - sin:z:lnlnm)
zlnz
1 d 2z + 2yy’
_ 2, .2 r_ d o 2 r_ 2 2.1 _ /
47. y = In(z +y7) =y T2ty d.z‘(m +y') = Y= 2 + 92 = Y +y'y =2z +2yy
2z
2, 1 2,1 _ ;o 2 2 _ ! — =
= o2y vy -2y =22 = (¢¥+y 2)y =2z = Y N ——
z 1 / 1, ’ z g Y
8. zv=y* = ylhz=zhy = y‘;+(lnaz)~y=m'§-y +hny = ylnw—;y:lny—;
y,:lny—y/w
Inz —z/y
4. f(z) =In(z—-1) = f'(:c)r—l/(m—l):(cv—l)_1 > fllo)=—-(z-1)"2% =
fm(a:)ZQ(.’E—l)_s = f(4)(m)=—2~3([c—1)"4 = e =
F (@) = (1) 234 - .(n_l)(x_l)—nz(_l)n—lu
(-1
50. y = 2% Inz, so D%y = D® ! = D8 (8m7lnx+m7).Buttheeighthderivativeofz7 is 0, so we now have

D (82" Inz) = D" (8 72°Inz +82°) = D" (8- 72° Inx)
—D°(8-7-62°Inz) =--- = D (812" Inz) = 8/z.

51. If f(z) = In(1 + z), then f'(z) = 1 ! — 80 f(0) =1

Thus, lim In(+2) _ g F@) gy
xz—0 xr —0 I x—0

f(z) = f0) _ o

— 0 :1‘
T AC)

52. Let m = n/x. Then n = zm, and as n — 00, M — OO

n 1 mx . 1 mT - .
Therefore, lim (1 —+ E) = lim (1 + -—> = [ lim (1 + —> ] = ¢® by Equation 6 .
n—oo n m m

m— o0 m— 00
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3.9 Hyperbolic Functions

1. (2) sinh0 = 1 (e” — €°) = 0 (b) cosh0 = (e’ +€°) =1(1+1) =1

0 -0 1_ -1 2 _
%_eTg//;‘zo (b)tanh1=S—¢ __ €
e’ + e

In2) -1 — 1
In 2 —In2 61112 (e n ) 2 2 1 2 3 3

3. (a) sinh(In2) = 3 = 5 = 5 == 1

! ~ (0.76159

2. (a) tanh 0 =

(b) sinh2 = 7 (e® — e™?) ~ 3.62686
In3 —1n3 1
e" +e 3+ 3
4. (a) cosh3 = £ (e + e73) ~ 10.06766 (b) cosh(In3) = 5 =
5. (a) sech0 = ! = ! =1 (b) cosh™* 1 = 0 because cosh0 = 1.
cosh0 1

6. (@) sinh1=3(e' —e™') ~1.17520

3
(b) Using Equation 3, we have sinh ™' 1 = In(1+ vIZ+1) = In(1 + v2) ~ 0.88137.
1. sinh(~z) = %[e‘z - e”(_””)} =3(e—¢€)=~1(e - e™®) = —sinhz
8. cosh(~z) = §[e +e ] = 1(e +¢") = 1(e" + %) = cosha
(& —e™) = 1(2e7) = "
(e* —e™®) (267%) =e™®

1. sinhz coshy + cosh zsinhy = [3(e® — e )] [3(e¥ + eV)] + [3(e” + e )] [5(e¥ - e )]

=g[(e"tY f ety — ety eT"TY) + (e — * Y 4 ety _ e )]

9. coshz + sinhz = 3(e® + e™") +

LS ST

1
2
10. coshz —sinhz = S (e +e77) — 1

I

= %(26”“’ _ 2€—z—y) — %[exﬂ/ _ e—(z+y)] = sinh(z + y)

12 coshcoshy + sinhasinhy = [3(e+ )] [} + )] + [4(e* = e%)] [§(* - e )]
=il(e eV ety gy | (eot¥ — e2=v _ gty e==Y)]
= (26"t 4 2e2v) = %[ez+y " e‘(z“‘)} = cosh(z +y)

13. Divide both sides of the identity cosh? z — sinh? z — 1 by sinh? z:
cosh? z _ sinh? ¢ _ 1
sinh®’z  sinh®z  sinh? z

< coth?z — 1 = csch? T.

sinhzcoshy  coshzsinh y

14, tanh(z + ) = sinh(z + y) _ sinhz coshy + cosh zsinh y _ coshzcoshy C(?Sh zcoshy
cosh(z +y) ~ coshz coshy + sinh z sinh y  coshzcoshy ~sinhzsinhy

cosh zcoshy ~ cosh z cosh y

_ tanhz + tanhy
1+ tanhztanh y

15. Putting y = z in the result from Exercise 11, we have
sinh 2z = sinh(z + z) = sinh z cosh & + cosh z sinh 2 — 2sinh z cosh .
16. Putting y = 2 in the result from Exercise 12, we have

cosh 2z = cosh(z + 2) = cosh z cosh & + sinh z sinh « = cosh® z + sinh? z.
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17 tanh(lnm) _ Sinh(lnm) B (elnw _ e—lnm)/2 - T (elnz)—l e x_l
. ~cosh(lnz)  (MF4e®)/2 g4 (o)t

ct—1/z (2 -1)/z z? -1

z+1/z  (22+1)/z  z2+1

18 Lt tanhz 1+ (sinhz)/coshz _ coshz +sinhz _ Le®+e ™) +5(e" —e’")
"1_tanhz 1— (sinh z)/coshz  coshz — sinh z ~ lemte?) - 1(e* —e®)
e +e *+e® —e’” 2€° -
= = = e
e +e*—e*+e T 2e®
Or: Using the results of Exercises 9 and 10, Mnh_m =L e

coshz — sinh x e ¢

19. By Exercise 9, (coshz + sinhz)" = ()" = e™® = coshnz + sinhnz.

20. sinhz =3 = cschz = 1/sinhz = 3. costh:sinh2w+1:~19—6+1:% = coshz = $ (since

cosh z > 0). sechz = 1/ coshz = ‘—;, tanh z = sinhz/coshz = %% = % and cothz = 1/tanhz = %

o

2. tanhz = £ > 0,50z > 0. cothz =1/tanh z = 5 sech?z =1—tanh’z =1— 4)’=2 =
sechz = % (since sechz > 0), coshz = 1/sechz = % sinhz = tanhzcoshz = % . %

cschz = 1/sinhz = 3.

22, y y y
1 |
y=1
l _____________________________
0 1 x 0 [ 2 x 0 1 x
L y=:1
- —_1 = =_1
y=eschx=-py y=sechx=gsl—h—x y=cothx=ors

2. @ lim tanha = lim et S = tim e™ 120
(@) lim tanhg = lim ———— - 72 = M 97m = T
- T 621: 1 0

. e* —e
(®) mkr_nootanhx— hIIloo eT e * ‘et so-—ce2@4+1  0+1

ez _ e—$
(¢) lim sinhz = lim ———— =0
xT— 00 xTr— 00 2
r _ -
(d lim sinhz = lim € "° -
r— —00 T — —00 2
. _ _ 2 _y
(e) mh_)rgo sechz = ango pranp—
eS+e® e ° 14+e 2 140

f) hm cothz = h = lim —— = -0 =1 [Or: Use part (a)]

e —e® e?® a—ol—e2® 1-—

(g) llm cothz = h . :ji z 00, since sinh z — 0 through positive values and coshx — 1.
—0
(h) lim cothz = lim (;)j;l ;: — —00, since sinhz — 0 through negative values and coshz — 1.
z—0" z—0"

(i) lim cschz = lim — =0
z— —00 z——oc0 €% — e T
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24. (a) %coshm = % [5(e +e 7)) = 3(e” - e”®) =sinhz

b d tanh z — d |sinhz| coshzcoshz — sinhzsinhz _ cosh? z — sinh® z _ 1 — sech?z
®) dz AT = dx |coshz | cosh® z cosh’z cosh?

d d coshzx 1 coshz
(C) CSCh T iz [smh :c] " sinh®z sinhz sinhz cschzcothx

d sinh z 1 sinh z

—_ e —_— = — . = — h t h

(d) sech:r: dz [ cosh :c} cosh?z coshz coshz seciztanhz
th d |coshzx _ sinhzsinhz — coshz cosh z _ sinh?z — cosh? z _ 1
(e) dz CO = dz |sinhz | sinh? z sinh? z sinh? z
= —csch?z

25. Lety = sinh™' 2. Then sinh y = z and, by Example 1(a), cosh’y — sinh?y =1 = [with coshy > 0]

coshy =+/1 +sinh?y = /1 + z2. So by Exercise 9, ¥ = sinhy + coshy = z + V1 + 22 =
y_ln(a:—i—\/l-{—:c?).

26. Let y = cosh™! z. Then coshy =zandy > 0, sosinhy = Vcosh®y — 1 = /72 — 1. So, by Exercise 9,
e =coshy+sinhy=z++v/22 -1 = y=In(z+vz2-1).

Another method: Write x = coshy = % (¥ + e7¥) and solve a quadratic, as in Example 3.

- inhy (ey—e_y)/Q e¥ v—1
21. (a) Lety = tanh ™' z. Then z = tanhy = S € -
() Lety = tanh™" z. Then z = tanhy coshy — (e Fev)2 ov e2y+1

ze? 4 r=e" -1 = 14g=c_ g2 = l+z=e¥(1-2) =

14z +z 14z
2y = - -1
e -z = 2y ln<1_$) = y 2ln( )

l—2

(b) Lety = tanh™! z. Then z = tanh . so from Exercise 18 we have

1+tanhy 14z 1+2 14z
¢ l—tanhy 1-z 2 ln(l—m) = v 2ln(l—:z: '

2. (a) y=csch™'z o cschy =z (z #£0) y
(ii) We sketch the graph of csch~! by reflecting the graph of csch (see
Exercise 22) about the line y=ux.

(iii) Let y = csch™! z. Thenxzcschy:ﬁ = ze¥—ze V=2 0 x
= z(e¥)’ -2¥-—z=0 = ey:u\ﬁﬂ.
z
Bute? > 0,s0forz > 0, e¥ = # and forz < 0,e¥ = #
Thus, csch™! ¢ = ln(i + %)
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() ()y=sech 'z <& sechy=wzandy>0. y

(i) We sketch the graph of sech™! by reflecting the graph of sech (see )

Exercise 22) about the line y = .
(iii) Lety = sech™! z.sox = sechy = 2 = ze¥+xze V=2 o

eY +e Y
Vi—z2 ;
= z(¥)?-2¥+z=0 & ey:_l.:t__l—w.. 0 1 x
x
R )
Buty >0 = ¥ > 1. This rules out the minus sign because 1-vi-= >1 & 1-V1-z2>2
z

s 1l-z>y/1-22 & 1-2z+22>1-2> & 22>z & z>1 butz=sechy <1 Thus,

14+ /11— 22 J1 = 2
eV = Lwl_i = sech 'z =1In (1_+_Li>
T

) ()y= coth ™'z ¢ cothy==« _
(ii) We sketch the graph of coth™! by reflecting the graph of coth (see

Exercise 22) about the line y = x.

e +e7?

(iii) Lety = coth™' z. Thenz = cothy = ————
ey —e Y

ze¥ —ze V=e'+e ¥ = (z—-1le'=(x+1)e? =
zy::c—i— z+1

_ +1
= 2y=1I = coth~lz=211 z
o) Y nm_1 coth™ z 2nm_1

e

29. (a) Lety = cosh™* z. Then coshy = zandy 20 = sinhy% =1 =
gyi _ 1 1 _ 1
dz sinhy N/COSh2 y— 1 vz2 -1
dy 1 1 1

dy
h~lz. Tl ] h2
b | Z = tan . — - — 1 = - — — 3
(b) Let k ent se¢ dz dr  sech?y 1—tanh®’y 1- z?

(since sinhy > 0 fory > 0). Or: Use Formula 4.

Or: Use Formula 5.
Lety = csch™ z. Th hy =2 = —cschycoth dy _ 1 = dy _ -—___——1
(c) Lety = csch™" . Then cschy = y v = =~ adgeny

By Exercise 13, cothy = +y/csch®y + 1 = £v/22 + 1. If z > 0, then cothy > 0, so cothy = va? + 1.

If z < 0, then cothy < 0, so cothy = —v 22 + 1. In either case we have
dy 1

1
dz _ cschycothy B lz| Va2 + 1

d
(d) Lety = sech~!z. Thensechy = x = —sechytanhy d_:ll/: =1 =

dy 1 _ 1 B 1
dr ~ sechytanhy  sechy/1—sech?y zy/1—a2

(Note that y > 0 and so tanhy > 0.)

d
(e) Lety = coth™!z. Then cothy =z = —csch?y a% =1 =

dy 1 1 1

= — = = by Exercise 13.
dz csch?y 1—coth®’y 1-— 22 )

30. f(z) = tanhdz = f'(z)= 4sech® 4z
3. f(z) =xcoshe = f'(z)=2 (coshz)' + (coshz)(z)’ = xsinhz + coshz



32.
33.
34.

35.

36.

37.

38.

39.
40.
a.

42,

a4

45.

49.

.y=tanh 'z = ¢ =
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g(z) =sinh*z = g¢/(z) = 2sinhzcoshz

h(z) =sinh(2z?) = h'(z) = cosh(z?) - 2z = 2z cosh(z?)

F(z) =sinhztanhz = F'(z) = sinhzsech?z + tanh z cosh z
1 —coshz

Gle) = 14 coshz

s¢.y _ (1+coshz)(—sinhz) — (1 — coshz) (sinh z)
Gle) = (1 + coshz)?

_ —sinhz — sinhz cosh z — sinh  + sinh z cosh _ —2sinhz
B (1 + coshz)? (1 + coshz)?
f(t)=e'secht = f'(t) = e*(—sechttanht) + (sech t)e' = e'secht (1 — tanht)
—1/2 tesch? /1 + ¢2
h(t) = cothv1+t2 = A (t) = —csch®VI+ £ - ;(1+¢%) (2t) = BV v

cosht = cotht

f(t) =In(sinht) = f/(t) = Sinlht
H(t) = tanh(e’) = H'(t) =sech?(e!) - ¢! = et sech?(e?)
y =sinh(coshz) = 3 = cosh(coshz)-sinhz

y=eOhIm o g geosh3e  Gnp 3y . g = gecoshe sinh 3z

Yy = .’52 Sinh—1(2.’r) = y, = w2 . _m -2 +sinh“1(2:c) -2 = 223':

ﬁ + sinh ™! (2:E)J
x

1,.-1/2 _ 1

= _—_—

1
— iz
1-(vz)? 2 2vz(1 - x)
y=wtanh‘1w+ln\/1—:z:2:ztanh_lm—k%ln(l—mz) =

;o 1 T 1 1 1
= tanh w+1_$2 +§<1_x2)(—2:r):tanh z

Yy =zsinh™ ' (z/3) - VO+ 22 =

'~ inh-1(% 1/3 N 2z — sinh-1(Z x 3 T o1 (T
Yy =sin <3)+x\/m W sin (3)+\/9+:c2 N sinh (3)

~y=sech 'VI—22 = ¢ —_ 1 —22 = i

VI-22\/T-(1-22)2V/1—22 (1—42)|z|

.y=coth™ /22 +1 = y = 1 2z

1
1—-(z24+1)2vz2 ¥ 1 T VR F1

20 a=12 3 4

As a increases, the graph flattens.

10

(@) y =20cosh(z/20) — 15 = o =20 sinh(z/20) - 55 = sinh(z/20). Since the right pole is positioned at

Z =7, we have 3/ (7) = sinh = 22 0.3572.

For y = acosh(z/a) with a > 0, we have the y-intercept equal to a.



220 O CHAPTER3 DIFFERENTIATION RULES

(b) If e is the angle between the tangent line and the z-axis, then tan o = slope of the line = sinh 2—70,
o = tan™* (sinh ) & 0.343 rad ~ 19.66°. Thus, the angle between the line and the pole is
6 =90° — o x 70.34°.

50. We differentiate the function twice, then substitute into the differential equation: y = T cosh !%
Py

dy T . . (pgz\pg _ . . PIT d’y P9z P9 _ P9 T
Y~ sinh(EE) X = - Pg
dz pgsm(T)T sinh == = G2 Ch(T)T T cosh
_ P9 osh PIZ

. d*y
We evaluate the two sides se tely: LHS = —
ides separately 122 T T

dy pg . 2 PgT _ Py pg
RHS = 1 2
T + ( dm) T 1 + sinh T = T osh™==, by the identity proved in Example 1(a).

51. (a) y = Asinhmz + Bcoshmz = y' = mAcoshmz + mBsinhmz =
y" = m?Asinhmz + m2B coshmaz = m?(Asinhmz + B coshmz) =
(b) From part (), a solution of y”" = 9y is y(z) = Asinh 3z + Bcosh3z. So
—4 = y(0) = Asinh0+ Bcosh0 = B, so B = —4. Now y'(x) = 3Acosh 3z — 12sinh3z =
6=1(0)=3A4 = A=2s0y=2sinh3z—4cosh3z.

sinh z e —e° 1—-e®> 1-0 1

53. The tangent to y = cosh x has slope 1 wheny =sinhz=1 = x= sinh™! 1= ln(l + \/ﬁ) by Equation 3.
Since sinhz = 1and y = coshz = V1 + sinh? z, we have coshz = /2. The point is (ln(l + \/5) ,\/5)

54, cosh z = cosh[In(secd + tan6)] = [ In(sec O+tan6) | o= In(sccfttan 9)]

1 1 1 sec — tan@
B -é[sec9+tan0+ sec9+tan9} T2 [sec9+tan0+ (sec@—!—tan@)(sec&—tan@)}
= —12- [sec 0+ tanf + %] = %(secB+tan9+sec0—tan0) =secl

55. If ae® + be™® = acosh(z + ) [orc sinh(z + ()], then
ae® +be™® = g (e"TF £e ’3) a(e"e® £e % ) = (2e)e” £ (e e~P)e~*. Comparing coefficients
of e® and e %, we have a = % Mandb==£%5 e P (2). We need to find  and 3. Dividing equation (1) by
equation (2) gives us % —+e? = (x) 28=In(x}) = B=3 Ln(+2). Solving equations (1) and (2)

3 ] 2a ] (6 2a «
1 —_— — -_— —_— —_— = —_
for e givesus € = ande” = % b SO = b

() If % > 0, we use the + sign and obtain a cosh function, whereas if % < 0, we use the — sign and obtain a

-~ o®=+4ab = a=2+*ab

sinh function.
In summary, if a and b have the same sign, we have ae” + be~® = 2v/abcosh(z + & In §), whereas, if a and b

have the opposite sign, then ae” + be™* = 2v/—absinh (z+3In(-%))

3.10 Related Rates

vV _dvds _, . de

_ .3
LV=e dat  dz dt dt
dA dAdr dr dA dr
= r? e — = — = — =27m(30 1 = 60
2 @A=7r" = = 2mr 7 (b) == 7 27rrd (30 m)(1 m/s) = T m>/s
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y=2+2z = Z—g:%i—i:(3m2+2)(5):5(312+2).Whenm=2.2—?=5(14):70.
.22+ =25 = QzZ—f—i—Qy%:O = x%:—y% Z—f:—%%.
Wheny = 4, 22 + 42 = 25 :'z:i&For‘fi—?t’:ﬁ.%:—}%(G):?s.
5.22=2"+¢* = 2z%=2x%+2y% = %:%(I%+y%>.Whenw:5andy=l2,
Z=5+122 = 2=169 = z::I:13.For%:—=2and%= ,%:fm(s-zﬂzs):i‘l‘—g.
6.y=vV1i+2z® = %:3—1%:%(1+w3)_1/2(3m2)‘;—f:ﬁQ%g.With%:4whenx:2and

3(4) dz dz =2cm/s.

y:3,wehavc4:2(3)dt = at

1. (a) Given: a plane flying horizontally at an altitude of 1 mi and a speed of 500 mi /h passes directly over a radar
station. If we let ¢ be time (in hours) and z be the horizontal distance traveled by the plane (in mi), then we are
given that dz/d¢t = 500 mi/h.

(b) Unknown: the rate at which the distance from the plane to the station is (c) X
increasing when it is 2 mi from the station. If we let y be the distance from 1|7
y
the plane to the station, then we want to find dy/dt when y = 2 mi.

(d) By the Pythagorean Theorem, y* = 2% +1 =  2y(dy/dt) = 2z(dz/dt).

d .
) % = 5% = 3(500). Since y? = 22 + 1, when y = 2. z = v/3. so d—i’ = ¥3(500) = 250 \/3 ~ 433 mi/h.
8. (a) Given: the rate of decrease of the surface area is 1 cmz/ min. If we let (©)

t be time (in minutes) and S be the surface area (in cm2), then we are
given that dS/dt = —1 cm?/s.

(b) Unknown: the rate of decrease of the diameter when the diameter is
10 cm. If we let z be the diameter, then we want to find dz /dt when
z=10cm.

(d) If the radius is r and the diameter z = 2r. then r — tzand S = 4nr? = 4#(%2:)2 =7rz? =

ds _ ds dz - dx
dt —dzdat g
ds dx dx 1 dx 1
—1:——:2 _— —_— = —— = i
(e) 7 T 7 = 7 Dy When z = 10 7 T So the rate of decrease

. 1 .
is 55— cm/min.

9. (a) Given: a man 6 ft tall walks away from a street light mounted on a 15-ft-tall pole at a rate of 5 ft/s. If we let ¢ be
time (in s) and z be the distance from the pole to the man (in ft), then we are given that dz/dt = 5 ft/s.
(b) Unknown: the rate at which the tip of his shadow is moving when he is ()
40 ft from the pole. If we let y be the distance from the man to the tip of

his shadow (in ft), then we want to find d%(:c +y) when z = 40 ft. 6
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. . 15 z+4y
(d) By51m11artr1angles,€:T = 15y=6zx+6y = 9Yy=6z = y:%m.
(e) The tip of the shadow movesatarateofi(x+ )*—d‘ 2, =598 _ s 5) =25
gty =gt =35 =50 =31/

10. (a) Given: at noon, ship A is 150 km west of ship B; ship A is sailing east at 35 km/h, and ship B is sailing north at
25 km/h. If we let ¢ be time (in hours), z be the distance traveled by ship A (in km), and y be the distance

traveled by ship B (in km), then we are given that dz/dt = 35 km/h and dy/dt = 25 km/h.

(b) Unknown: the rate at which the distance between the ships is changing at (c)
4:00 p.M. If we let z be the distance between the ships, then we want to

find dz/dt whent = 4 h.

x 150 — x

dz dx dy
2 N2 a2 — - 42y =2
)22 =(0150—z)*+y° = 2z o 2(150 a:)( dt) 2y o

(e) At 4:00 P.M.. z = 4(35) = 140 and y = 4(25) = 100 = 2= /(150 — 140)2 + 100? = +/10,100. So

dz 1 de  dy] —10(35) +100(25) _ 215
—_ == —150) — + = —— ~21l4km/h
el Sl dt] /10,100 101 m/
. dz : dy : 2 2 2
11. y Wearegwenthatd— =60m1/handﬁ =25mi/h. 2* =z +y° =
dz _ dz dy dz _ dx dy dz _ 1 d:v dy
ANRE 2T =y > ag =ty T T e Ya)

After 2 hours, z = 2(60) = 120andy =2(25) =50 = z=V 1202 + 502 = 130,

dz 1( do _ dy\ _ 120(60) +50(25) _
dz _ _ 120060) + 90R29) _ 65 mi/h.
T ( dt > 130 mi/
W hat & — 1.6 m/s. By similar triangles, — =2,
e are given that — = m/s. By similar triangle 5" Y=
dy  24dx dy  24(1.6)
— = ———_— = — = = _— = — = — 6 N
7t ol x2 (1.6) When z = 8, o 6 0.6 m/s

5o the shadow is decreasing at a rate of 0.6 m/s.

d
We are given that dz _ 4 ft/s and Y _5 ft/s. 2> = (z + y)? +500° =

dt dt

dz dx dy
223—_2(:c+y)( dt

= (4 ft/s)(20 min)(60 s/min) = 4800 ftandy = 5 - 15 - 60 = 4500 =
z = /(4800 + 4500)2 T 5002 = /86,740,000, so

dz _z+y dx 4800+45OO(4+ )= 837
dt /86,740,000 /8674

> _ 15 minutes after the woman starts, we have

dz _ ~ 8.99 ft/s.
dt z



SECTION 3.10 RELATEDRATES O 223

14. We are given that % = 24 ft/s.

(a) 2B y? = (90 —z)> +90° = 2y Zt —2(90—:;:)(-%).
When z = 45, y = v/452 + 902 = 45+/5, so
® Pl -2 da _ 85y
A-x E“T( dt)_45f5 W
nt so the distance from second base is decreasing at a rate of % ~ 10.7 ft/s.

(b) Due to the symmetric nature of the problem in part (a), we expect to get the same answer —and we do.

dz dz 45 24
? =2 +90? — = =452 = dz _ (24) = —= =~ 10.7 ft/s.
22 =z"4+90° = 2z 7 2z — o . Whenz = 45, 2 = 45/5, so 7 45\/_ )= 7 /s

15. A = Jbh, where b is the base and A s the altitude. We are given that % =1 cm/min and % = 2 cm?/min.

dA

Using the Product Rule, we have — pri 1 (b 7 +h db) When h = 10 and A = 100, we have

100 = £b(10) = =10 = b=20,so2——(20 1+10§)) = 4—20+10% =

2
db  4-20
Z- 10 = —1.6 cm/min
ull ! dz 2 2
16. pulley leena:—lm/s,ﬁndawhenr:Sm.y =z +1 =
y
d dz dz d
e 1 oy Y o @ _yay_ Yy - —
sop ydt mdt = &zt :E.Whenz—&y—\/ﬁ_&so
* dx

65
P —\/T—. Thus, the boat approaches the dock at @ ~ 1.01 m/s.

17. We are given that ? = 35 km/h and % =25km/h. 2° = (z + y)* + 1002

dz d
- de_— ($+y)< df'tJ) At4:00 P.M., z = 4(35) = 140 and

y=4(25) =100 = == /(140 + 100)2 + 1002 = /67,600 = 260, so
%_x-f—y(dz' dy) 140 4100

720
d 2z (&t @ 260 (30 +25) = = ~ 55.4km/h,

18. Let D denote the distance from the origin (0, 0) to the point on the curve y =4/

D=\/@-0F +@w-07 = /22 (va)y = Vai 12 =

dD

ab 4/ 9 -1/2 dr _2z+1 dx dz

— 3 (2% +2) 2z +1) = & T a Wlth ; = 3whenz =4,
dD 9 27

dt 2\/20( ) 15 ¥ 302 em/s
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19. 2
17|
6
/|
20. 3
b
h
21. 0.25 0.3 0.25
\_ o/
05,
0.3

e —|

If C = the rate at which water is pumped in, then % = C — 10,000, where
_1 2, - . I . T h
V = 3mr®h is the volume at time ¢. By similar triangles. 5% =
rolh o Velr(in)th= 2t > W oo zp2dh
3 3m(3h) 27 dt oh dt
dh . 2
When h = 200 cmn, i 20 cm/min, so C — 10,000 = §(200)*(20) =

C = 10,000 4 222090 7 ~; 289,253 cm®/min.

- . 3
By similar triangles, — = % so b = 3h. The trough has volume

1
dv dh
V = 1bh(10) = 5(3h)h = 15h* 12 = — = 30h—
Lbh(10) = 5(3h)h = 15h* = 12=— =30h—p =
dh 2 dh 2 4
= =W =1 2= == in.
o = 5h hen h ;5.1 5ft/mm

The figure is labeled in meters. The area A of a trapezoid is
1 .
3 (base; + basez)(height), and the volume V' of the 10-meter-long trough is

10A. Thus, the volume of the trapezoid with height k is

- . a 0.25
V = (10)} [0.3 + (0.3 + 2a)] h. By similar triangles. 5+ = 7= = 5

, SO

v dV dh dh
e = . = 2 L= 1 e
2¢=h = V =5(0.6+h)h=23h+5h" Now —— - dndt = 0.2=(3+10h) 7 =
dh 0.2 dh 0.2 02 10
37 10h When h = 0.3, —- & = 37100, 3) 6 m/min = 30 m/mm or 3 cm/min.
22. 34 | The figure is drawn without the top 3 feet.

W—— —]

= 1(b+12)h(20) = 10(b + 12)h and, from similar triangles,

‘j X[ AE
e 6> le— 12— le——16 —>1
z 6 y 16 8 8h 11h
z_2° __° = = 124 — =12 . Thus,
h 6andh 5 3sob z+12+y=h+ 2+3 + — 3 us
11h 110R2 av 220, dh
——\h= == = 220 )=, When h = 5,
V= (24+ 3 )h 240h + —3 and 50 0.8 = — (240+ 3 h) b7 en
dh 0.8

dt ~ 240 + 5(220/3)

23.

= 2275

~ 0.00132 ft/min.

dv . h wh
We are given that - = 30 3 /min. V = inr’h = %w<§> h= T
dv  dVdh wh? dh dh 120
= w-aha © T T @ T a T w
h =10 ft, dh _ 120 _ 6 ~ 0.38 ft/min.

dt 10w 5w
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N T
24. We are given dz/dt = 8 ft/s. cot § = 0 = %7 100cotd =
’ 100 d de do sin? @
ar _ _ & = - _ - 8. When y = 200,
. g = ~l00esc’b o = 100 y
* 100 1 do (1/2)* 1
- — == — = — -8 = rad/s. The angle is
smf=s0=3 = & 100 ~50 Y/ g

decreasing at a rate of - rad/s.

25. A:%bh,butb:5mandsin0:§ = h =4sinb, so

df
A = 1(5)(4sin8) = 10sin 6. We are given i 0.06 rad/s. so

5 dA  dAdf .
Pl = (10cos 0)(0.06) = 0.6 cos 6. When 8 = 3
dA ”
i 0.6(cos §) = (0.6)(3) = 0.3 m?s.
26. We are given df/dt = 2°/min = 56 Tad/min. By the Law of Cosines,
12
9 z? =122 +15% — 2(12)(15) cosf = 369 — 360cosf =
dz dr  180sin6 dd
— = — —. When 6 = 60°,
15 2z 7 = 360 sm9 = P s @ When
= /369 — 360 cos 60° = /189 = 3 /2L, so
dr _ 180sin60° 7 \/?—: Vin

= = —— ~0.396 in.
7 3\/_ % 3\/2_1 71 0.396 m/min

2]. Differentiating both sides of PV = C with respect to ¢ and using the Product Rule gives us P av + Vﬁ =0

dt dt
av _ VdpP d v _ 600

P
T . When V' = 600, P = 150 and i 20, so we have —— ——(20) = —80. Thus, the

dt 150
volume is decreasing at a rate of 80 cm®/min.
av dpP dv vie o gdp V dP
28. PV = C P.1.4y0%4 yre 2o _ LY er
= etV g =0 e e 4v0-4 & = TT4p gz When
dP av 400
V =400,P =80and — = —1 —_— =
80 an p7 0, so we have 7 1.4(80)( 10) = ——. Thus, the volume is increasing at

arate of 2% ~ 36 cm®/min.

1 1 1 1 180 9 400
29. With R; = 80 dR-lOO——— Tt — = — = —_.Di iati
i 1 and Ry & + R 80 T 100 — 8000 400,soR 9 Differentiating
1 1 1 1dR 1 dR, 1 dR»
— — t —
R R + oA with respect to ¢, we have

R®dt ~ RZ dt R dt
dR ./ 1 dR; 1 dR, _
7 =R <R2 7 —I—R2 7 . When R; = 80 and Ry = 100,

dR 4002 107
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dB
30. We want to find = when L = 18 using B = 0.007W?/3 and W = 0.12L%%3,

dB  dB dW dL

B _ dB aWdl _ 21/ 953 159y (2015
dt ~ dW dL dt (0'007 W )(0'12 253-L )(10,000,000>

= [0.007- 2 (0.12- 182%%) %] (012 2.53 - 18"%°) (1—5(’)-7-) ~1.045 x 1078 g /yr

3. We are given that C(li—:: =2ft/s.sinf = % = z=10sinf =

dx

de s T
10 i —10c050—£.When0—z,2—10cos—— =

w__2
dt_10(1/\/§)_'5

32. P Using Q for the origin, we are given dgf- = —2 ft/s and need to find ‘fi—ltl when

i z = —5. Using the Pythagorean Theorem twice, we have

VT2 + 122 + /y? + 122 = 39, the total length of the rope. Differentiating

with respect to t, we get L d—$ + Y d_y —
V2 +122 dt Y2+ 122 dt

dy _ _zVy?+12° 24+122dx
= -ve henz = —5, 39 = /(—5)2 + 122 24122 = 13+ /y? + 122
= = i Now when z VB2 +122 + /92 + +

VY2 + 122 = 26, and y = /262 — 122 = +/532. So when z = -5,

dy (—5)(26) 10 ) .
dy _ _(29)10) gy 1 ~ —0.87ft/s. So cart B is moving towards Q at about 0.87 ft/s.
dt \/532(13)( ) 133 /
33. (a) By the Pythagorean Theorem, 4000° + y? = ¢*. Differentiating with respect
£
Y to t, we obtain 2y -(j% =2¢ Z—i We know that % = 600 ft/s, so when
4000 y = 3000 ft, £ = /40002 + 30002 = /25,000,000 = 5000 ft and
e _ydy _ 3000 1800
= —— = 360 ft/s.
@ = tdt 50000 7 /s
2
oy d d( y o 1 dy df _ cos 6 dy
(0) Here tanf = g5 = g (tan®) = (@) = =G - mooa T & 4000 dt

400
4000 _ 4000 4
= g SO

_ dy _ - 9= 20
When y = 3000 ft, i 600 ft/s, £ = 5000 and cos 8 = 7 = 5000

—_— = = 6 ad
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34, ) We are given that gg = 4(27) = 8w rad/min. z = 3tanf =
2
3 Z—3sec 9— Whenz = 1,tanf = 3, sosec’§ = 1+ (2) = Y and
dz on
P . = = 3(%)(8m) = 8% ~ 83.8 km/min.
35. We are given that Z—j = 300 km/h. By the Law of Cosines,
y* =a? +12 - 2(1)(z) c0s120° = 2% + 1~ 2z(~1) =2® + z + L. s0
dy dr dx dy 2x+1dz
= =2r— + — — . After 1 minute,
WaTTa w7 - 2 i
=30 =-5km = y=52+5+1=+31km =
dy 2(5) +1 1650
—= = 300) = — =~ 296 km/h.
at = ova 0= {
. dr . dy ) .
36. We are given that i 3 mi/h and i 2 mi/h. By the Law of Cosines,
Y N 22:x2+y2—2mycos45°:z2+y2—\/§wy =
o dz dz dy dy dz . 1
45 = —2r = == — ——. After 1 tes |= 5 h|,
- —> QZdt 2z T +2 o ﬁxdt \/ﬁydt After 15 minutes [=  h]

37.

wehavez:%andy:

N

=3 > 2=+ -VIQE) = =YB-0V2

and

4

dz 2 3 1Yo — /3(8)2 — 3(1)a] — 2 13 — 6\/— 3673
dt_m[2(2)3+2(2)2 ‘/5(4)2 \/5(2)3} m 13-6v2

~ 2.125 mi/h.

Let the distance between the runner and the friend be ¢. Then by the Law

4
A\ of Cosines,

200—1 2 = 2002 + 1002 — 2 - 200 - 100 - cos & = 50,000 — 40,000 cos 8 (%).

Differentiating implicitly with respect to ¢, we obtain

2¢ % = —40.000(— sin ) Z—g Now if D is the distance run when

the angle is 6 radians, then by the formula for the length of an arc on a circle, s = 78, we have D
1 dd 1 dD 7

= 100 = @10 @ - 100" To substitute into the expression for % we must know sin @ at the time

= 1000, so

when ¢ = 200, which we find from (%): 200% = 50,000 — 40.000 cosf < cosf = % =

. V15 _ dl VIS [ 7
in6 = /1 ()2 = Y5 : < - 2L
sin (1) 7 Substituting, we get 2(200) 7 = 40,000 + 10

de/dt = 1418

A 6.78 m/s. Whether the distance between them is increasing or decreasing depends on the
direction in which the runner is running.
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38.

The hour hand of a clock goes around once every 12 hours or, in radians per
8 hour, %' = Z rad/h. The minute hand goes around once an hour, or at the rate

of 2 rad/h. So the angle 6 between them (measuring clockwise from the
minute hand to the hour hand) is changing at the rate of
df/dt = T — 2m = — L% rad/h. Now, to relate 6 to £, we use the Law of
Cosines: £2 = 4> + 8% —2-4-8-cosf = 80 — 64 cos f (»).

dt do

Differentiating implicitly with respect to ¢, we get 2¢ i —64(—sinb) ai

hands is one-twelfth of the circle, that is, 2;—’2' = 7§ radians. We use (%) to find £ at 1:00:
¢=,/80—64cos L = /80— 32 v/3. Substituting, we get 2¢ a _ 64sin I (—4%) =

dt 6
de _ 64(3) (%) _ 88w
dt 2./80-32+3 3/80 — 323

decreasing at a rate of 18.6 mm/h = 0.005 mm/s.

At 1:00, the angle between the two

~ —18.6. So at 1:00, the distance between the tips of the hands is

3.11 Linear Approximations and Differentials

1. As in Example 1, T(0) = 185, T'(10) = 172, T(20) = 160, and T
~T(2 172 — 160 e 1807
T'(20) ~ T(l(l)g — gO( 0) _17 0 - —1.2 °F/min. 1701
T(30) ~ T(20) + 7"(20)(30 — 20) ~ 160 — 1.2(10) = 148 °F. 1601
We would expect the temperature of the turkey to get closer to 75 °F 1507
as time increases. Since the temperature decreased 13 °F in the first 1401
10 minutes and 12 °F in the second 10 minutes, we can assume that the 0 1:0 2=0 3.0 t
slopes of the tangent line are increasing through negative values:
—1.3,—1.2,.... Hence, the tangent lines are under the curve and 148 °F
is an underestimate. From the figure, we estimate the slope of the tangent line at t = 20 to be %—7 = - %.

Then the linear approximation becomes T'(30) = T'(20) + T"(20) - 10 = 160 — 37(10) = 1475 ~ 147.7.

P(1) - P(2) _ 871749 _

2 P2~ = —12.2 kilopascals /km. P
1-2 -1
1001 P

P(3)~ P(2)+ P'(2)(3-2) = 749 — 12.2(1) = 62.7 kPa. 90/

From the figure, we estimate the slope of the tangent line at h = 2 to be 30+

9B - 63 _ —E. Then the linear approximation becomes 0 L

0-3 3 60$
P(3)~ P(2) + P'(2) 1~ 74.9 — ¥ ~ 63.23 kPa.
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3. Extend the tangent line at the point (2030, 21) to the ¢-axis. P 130
Answers will vary based on this approximation—we'll use 20f
t = 1900 as our ¢t-intercept. The linearization is then Percent
P(t) ~ P(2030) + P/(2030)(t — 2030) e 0t 2
~ 21 + 25 (t — 2030) T~
P(2040) = 21 + 25(2040 — 2030) ~ 22.6% o oo T

P(2050) = 21 + 25(2050 — 2030) ~ 24.2%

These predictions are probably too high since the tangent line lies above the graph at t = 2030.
N(1980) — N(1985)  15.0 —17.0 —0dand B — N(1990) — N(1985) 193 -17
1980 -1985 -5 1990 - 1985 5

/ T N(t)—N(1985)NA+B
Then N'(1985) = lim ——— o ~ 2
N(1984) ~ N(1985) + N'(1985)(1984 — 1985) ~ 17.0 + 0.43(—1) = 16.57 million.

4 Let A= 0 = 0.46.

= 0.43 million/year. So

N(1995) — N(2000)  22.0 — 24.9
N'(2000) ~ =
(2000) 1995 — 2000 -5

N (2006) & N(2000) + N'(2000)(2006 — 2000) ~ 24.9 + 0.58(6) = 28.38 million.

5 flx)=2* = f'(z)=322s0 f(1)=1and f'(1) = 3. Witha = 1. L(z) = fla)+ f'(a)(z — a)
becomes L(z) = f(1) + f'(1)(z — 1) =1+ 3(z — 1) =3z -2.

6. f(z) =Inz = f'(z)=1/2.50 f(1) = 0 and (1) =1
Thus. L(z) = f() + f'() (z = 1) =04+ 1(z — 1) =z — 1.

1 f(z) =cosz = f'(z) = —sinz. so f(3) =0and f'(3) = —1. Thus,
K = 1(5) +1(5) (e~ 5) =0-1(o-5) = 2+ 5.

8 fl@) =Yz =27 = fl(a)= 37723 50 f(~8) = —2 and f(-8) =&,
Thus, L(z) = f(-8) + f'(~8)(z + 8) = —2 + 5E+8)=24a-4

= 0.58 million/year.

9 f(2) =vVI—7 = f(z)= 2\/%,50 £(0) = 1and , 3
f(0) = —1. Therefore. f
VI=2 = f(z) ~ £(0) + f(0)(z - 0) 4 N\
- 35
=1+ (-3)z-0)=1- 1z L —5

SoV0.9=yT-01~1- 1(0.1) = 0.95 and
V0.99 = VT=001 ~ 1 — 1(0.01) = 0.995.

0.9(@)=VT+z=(1420)"* = ¢@@)=114+q) 25 2
50g(0) = 1and g'(0) = 1. ©. 1)
Therefore. /T +z = g(z) ~ 9(0) +4'(0)(z - 0) =1+ 3z 305 : 3
So V0.95 = ¢/T+ (—0.05) ~ 1 + 3 (—0.05) = 0.983. and g J
V11=YT+01~1+1(0.1) =1.03 I
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1.

12.

13.

14.

15.
16.

17.

18.

19.

20.
21.

f(fc):vsl—m:(l—a:)l/z‘ = fl($)=—%(1—x)_2/3,so
£(0) = 1and f'(0) = —3. Thus,
f(z) ~ F(0) + f'(0)(z — 0) = 1 — $z. We need

YT-z-01<1-%tz< Y1—=z+0.1 whichis true when
—1.204 < z < 0.706.

f(z) =tanz = f'(z)=sec’z.s0 f(0)=0and f'(0) =1
Thus. f(z) = f(0) + f'(0)(z —0) =0+ L(z - 0) ==

We need tan z — 0.1 < z < tanz + 0.1, which is true when

-0.63 <z < 0.63.

f@) = g = 020 2
F(z) = —4(1 +22)73(2) = (TJ%{)? s0 £(0) = 1 and f'(0) = —8,

Thus. f(z) =~ f(0) + f'(0)(z —0) =1+ (—8)(z —0)=1-8z.
Weneed 1/(1+2z)* —01<1-8z<1/(1+ 2z)* + 0.1, which is true
when —0.045 < z < 0.055.

fz)=e" = f'(z)=e".s0f(0)=1and F(0)=1.
Thus, f(z) =~ f(0) + f/(0)(z —0) =1+1(z—0) =1+=2.
We need e® — 0.1 < 1 +x < €” + 0.1, which is true when
—0.483 < = < 0.416.

-1

Ify = f(). then the differential dy is equal to fl(z)de.y=a*+5c = dy= (42® +5) dz.

y=cosmz = dy= —sinnz - mdx = —wsinTrdx

y=zlhz = dy= <x~i+lnw-1> dr=(1+1Inz)dz

- 2 =11+ @) dt = ——=
Yy T+ = dy=3i(1+¢t%) (2t) 7
w41l o (w=1() = (ut ny =2 4
YT uo = (u—1)2 du#(ufl)2 v

y=(1+2r)"" = dy=—4(1+2r)7° 2dr=-8(1+ 2r) "% dr
@y=2>+2c = dy=(2z+2)dr

(b) When z = 3and dz = 3. dy = [2(3) + 2] (1) =4

(@) y = et = dy= ‘—iem“dm

(b) When z = 0 and dz = 0.1, dy = (3€°)(0.1) = 0.025.
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5
B @y=vVi+tsz = dy=3(4+5z)"% 5dzx= L= mdm

5
(b) Whenz = O and dz = 0.04.dy = —=(0.04) = 2. L = L = 0.05.

2V4

1
8 Qy=1/(z+1) = dy:~mdm

1
(b) Whenz = 1and dz = —0.01. dy = —

55 (=0.01) = - 155 = 355 = 0.0025.

100 — 200
25 (a)y =tanz = dy=sec’zdx
(b) When z = mr/4 and dz = —0.1. dy = [sec(n/4)]* (=0.1) = (\/5)2 (=0.1) = —0.2.

26. (a) y=cosz = dy=—sinzdr

(b) When & = 7 /3 and dz = 0.05. dy = — sin(m/3)(0.05) = —0.5 /3 (0.05) = —0.025 v/3 ~ —0.043.

2.y=z2>z=1.Az=05 = By=\Vrz=10=1 =

Ay =(1.5)* =12 = 1.25. Ay=+v2-V1=12-1~0414
dy =2z dr =2(1)(0.5) =1

'

dy

]

9. y=6-z’2z=-2Az=04 =
Ay = (6~ (-1.6)°) — (6 — (=2)%) = 1.44
dy = —2zdx = -2(-2)(04) = 1.6

y
dy
l ’
— 2
(-2 [de | ¥y=6-x
A]<f2 0 X

Ny=f)=2" = dy=>52"de. Whenz = 2 and de — 0.001. dy = 5(2)*(0.001) = 0.08, so
(2.001)° = f(2.001) ~ £(2) + dy = 32 + 0.08 = 32.08.

3
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1 1
Ry=flz)=vz = dy= dz. When z = 100 and dz = —0.2, dy = ———(—0.2) = —0.01.s
2z v=3 r00( .2) .01, so
1v/99.8 = £(99.8) ~ f(100) + dy = 10 — 0.01 = 9.99.
2 2
B.y=flx)=2 = dy= dzr. Whenz = 8¢ = = = S
y = f(x) Y 375 . When z = 8 and dz = 0.06. dy 3\%E(O.OG) =0.02. so

(8.06)%/% = f(8.06) ~ f(8) + dy = 4 + 0.02 = 4.02.
M.y=f(x)=1/z = dy=(—1/2")de. Whenz = 1000 and dz =2, dy = [—1/(1000)?](2) = —0.000 002.
s01/1002 = £(1002) = f(1000) + dy = 1/1000 — 0.000 002 = 0.000 998
3.y = f(z) =tanz = dy= sec? z dz. When z = 45° and dz = —1°,
dy = sec? 45°(—m/180) = (\/5)2 (—m/180) = —=n/90. so
tan44° = f(44°) ~ f(45°) + dy = 1 — 7/90 ~ 0.965.

3%.y=f(z)=lnhz = dy= édm. When z = 1 and dz = 0.07. dy = $(0.07) = 0.07. so
In1.07 = f(1.07) ~ f(1) + dy = 0+ 0.07 = 0.07.

37. y = f(z) =secz = f'(x)=secz tanz.so £(0) = 1and f'(0) = 1-0 = 0. The linear approximation of f
at0is f(0) + f'(0)(z — 0) = 14 0(z) = 1. Since 0.08 is close to 0. approximating sec 0.08 with 1 is reasonable.

8. Ify=2%1y = 6z and the tangent line approximation at (1, 1) has slope 6. If the change in x is 0.01, the change
in y on the tangent line is 0.06. and approximating (1.01)6 with 1.06 is reasonable.

39,y = f(z) =lnz = f'(z) =1/z.s0 f(1)=0and £/(1) = 1. The linear approximation of f at 1 is
f)+f/()(z—1)=0+1(z — 1) ==z — 1. Now £(1.05) = In1.05 ~ 1.05 — 1 = 0.05. so the approximation
is reasonable.

0. (a) f(z) = (z-1)* = fl(z)=2(- 1).s0 f(0) = 1and f'(0) = —2.

Thus. f(z) =~ Ls(z) = £(0) + f'(0)(z — 0)=1-2z.
glz)y=e* = 4g'(z)= —2¢72% 50 ¢g(0) = Land ¢'(0) = —2.
Thus. g(z) & Lg(z) = g(0) + ¢'(0)(z — 0) =1 — 2z.

h(z) =1+1In(l—2z) = h'(z)=7 2 soh(0)=1and ' (0) = —2.

—on
Thus. h(z) =~ Lr(z) = h(0) + h'(0)(z — 0) = 1 — 2.

Notice that Ly = Lg = L. This happens because f. g and h have the same function values and the same
derivative values at a = 0.

The linear approximation appears to be the best for the

(b)

function f since it is closer to f for a larger domain than it is
to g and h. The approximation looks worst for h since h

moves away from L faster than f and g do.
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81. (a) If z is the edge length. then V = 2* = dV = 3z®dz. When z = 30 and dz = 0.1.
dV = 3(30)%(0.1) = 270, so the maximum possible error in computing the volume of the cube is about
270 cm®. The relative error is calculated by dividing the change in V. AV, by V. We approximate AV
with dV/.

2 d 0.1
Relative error = &Y ~ &V _ 327dz _ 4 f . 3(—) —0.01.

vV TV 3 30
Percentage error = relative error x 100% = 0.01 x 100% = 1%.
(b) S=62> = dS=12zdr. Whenz = 30anddz = 0.1, dS = 12(30)(0.1) = 36. so the maximum
possible error in computing the surface area of the cube is about 36 cm?.
AS dS 12zdx dz 0.1 -
ati =G R G5 =—— =2—=2 —= ) =0.006.
Relative error 5 5 622 - < 30 >

Percentage error = relative error x 100% = 0.006 x 100% = 0.6%.
4. () A=nr’ = dA=2nrdr. Whenr = 24 and dr = 0.2, dA = 27m(24)(0.2) = 9.6, so the maximum

possible error in the calculated area of the disk is about 9.67 ~ 30 cm?2.

. _AANdA_27rrdr_2dr_2(0.2)_O,2¥lh =
(b) Relative error = AN AT T =, T YT —60—0.016.

Percentage error = relative error x 100% = 0.016 x 100% = 1.6%.

43. (a) For a sphere of radius 7. the circumference is C' = 27rr and the surface area is S = 4712, 5o 7 — C/(2r) =
§=4n(C/2r)* =C*/nr = dS = (2/m)CdC. When C = 84 and dC = 0.5. dS — 2(84)(0.5) e
™ T

. . 84 . ds 84/m 1
so the maximum error is about — == 27 cm?. Relat N— =—=— =~~0.012
r - c ative error 5 82/

4 4 4 (C\* cC® 1
b = — 3 = — _ = — = — 2 = ==
®) V=S 371'(277) 62 = dV=55C%dC. When C = 84 and dC = 0.5
1 1764 . .
av = 2_7#(84)2(0'5) =~ s0 the maximum error is about 177:254 ~ 179 cm®. The relative error is
2
approximately av = M = i ~ 0.018.

Vv (84)3/(671’2) 56
44. For a hemispherical dome. V = 27r® = dV = 2712 dr. When r = 3(50) = 25 m and
8
8. () V=n’h = AV ~dV = 2rrhdr = 2nrh Ar
(b) The error is
AV —dV=[r(r + Ar)*h — 7TT2h] —2mrh Ar = nr2h + 27rh Ar + 7(Ar)2h — 7r%h — 27rh Ar
= n(Ar)*h

dr = 0.05 cm = 0.0005 m, dV = 2m(25)%(0.0005) = 5% 50 the amount of paint needed is about 3* ~ 2 m?,

3
4. F = kR* = dF =4kR3dR = %:M:Ll(ﬁ

kR4 R

4 times the relative change in R. So a 5% increase in the radius corresponds to a 20% increase in blood flow.

> . Thus, the relative change in F is about

47. (a)dczﬁdmZOdr:O
dx
d du
b) d(cu) = = =c® gz =
(b) d(cu) dz(cu)drc ¢ dr = cdu

d du dv du dv
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_d dv du dv d
(d)d(uv)—a(uv)dz:(ua+v%>dm=uﬂdz+vd—2dm:udv+vdu
p vdu ud’U vdud dvd
u u 5 — U= — ar —u —— axr
da(¥) = & (¥ _ _dzx de 4. _ _dz d _vdu—udv
© (v) dz (v)dw v2 de = v? = v2?
d
f)d(z") = . (™) dx = nz" ' dzx

48. (a) f(z) =sinz = f'(z) = cosz,so f(0) = 0and f'(0) = 1.
Thus, f(z) = f(0) + f/(0)(z — 0) =0+ 1(z — 0) = z.

(b) A -
1 y=102sinx 0.36 YT

( ( )

Ty =098sinx y=102sinx

4
/ y=0.98sin x

0.33 - 0.36

7 y=1.02sinx

=0.98sin ) .
y 985mr\ Va

—036 ~ —0.33

We want to know the values of z for which y = z approximates y = sin with less than a 2% difference; that

is. the values of z for which

zosnTl 502 e —002< T <002 e

sinx sinx
—0.02sinz < ¢ —sinz < 0.02sinz  if sinz >0 0.98sinz < z < 1.02sinz if sinz >0
—0.02sinz >z —sinz > 0.02sinz if sinz <0 1.02sinz < z < 0.98sinz if sinz <0

In the first figure, we see that the graphs are very close to each other near z = 0. Changing the viewing rectangle
and using an intersect feature (see the second figure) we find that y = x intersects y = 1.02sinz at ¢ = 0.344.
By symmetry, they also intersect at T =~ —0.344 (see the third figure.). Converting 0.344 radians to degrees, we

get 0.344(%?0) ~ 19.7° = 20°, which verifies the statement.

49. (a) The graph shows that f'(1) = 2,s0 L(z) = f(1) + ff)(xz—-1)=5+2(x—1)=2x+3.
£(0.9) = L(0.9) = 4.8 and f(1.1) =~ L(1.1) = 5.2.
(b) From the graph, we see that f '(x) is positive and decreasing. This means that the slopes of the tangent lines are
positive, but the tangents are becoming less steep. So the tangent lines lie above the curve. Thus, the estimates in

part (a) are too large.
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50. (a) g'(z) = V22 +5 = g¢'(2) =9 =3 g(1.95) = g(2) + ¢'(2)(1.95 — 2) = —4 + 3(—0.05) = —4.15.
9(2.05) ~ g(2) + ¢'(2)(2.05 — 2) = —4 + 3(0.05) = —3.85.
(b) The formula g’(z) = v/z% + 5 shows that ¢’ (z) is positive and increasing. This means that the slopes of the
tangent lines are positive and the tangents are getting steeper. So the tangent lines lie below the graph of g.

Hence, the estimates in part (a) are too small.

LABORATORY PROJECT Taylor Polynomials

1. We first write the functions described in conditions (1). (ii), and (iii):
P(z) = A+ Bz + Cxz? f(z) =cosz
P'(z) = B+2Cz f'(z) = —sinz
P’(z) = 2C f'(z) = —cosx

So. taking a = 0, our three conditions become

P(0) = f(0): A=cos0=1
P'(0) = f'(0): B=—sin0=0
P"(0) = f"(0): 2C =-cos0=—-1 = C:_%

The desired quadratic function is P(z) = 1 — %zz, so the quadratic approximation is cosz &~ 1 — %mz.

1.4 The figure shows a graph of the cosine function together with its
L . L . L
linear approximation L(x) = 1 and quadratic approximation
Yy = cosx
i \ is P(z) =1~ 52 near 0. You can see that the quadratic
/ approximation is much better than the linear one.
P
—
-1.4

2. Accuracy to within 0.1 means that \cos:c — (1 - %xz)‘ <01 &
—0l<cosz—(1-32*) <01 < 01> (1-32%) —cosz > 01 <«

cosz+0.1>1- 32" >cosz-01 & cosz —0.1<1-3z* <cosz+0.1.
2 Yy=cosx+0.l

P / From the figure we see that this is true between A and B. Zooming in
or using an intersect feature, we find that the z-coordinates of B and
A are about £1.26. Thus, the approximation cosx ~ 1 — %m2 is

A B accurate to within 0.1 when —1.26 < z < 1.26.
~1.6 (A= Yy 1.6
—0.1
3.If P(x) = A+ B(z — a) + C(x — a)2. then P'(z) = B+2C(z — a) and P"(z) = 2C. Applying the conditions
(1). (i1), and (iii), we get

P(a) = f(a) : A= f(a)
P'(a) = f'(a) : B = f'(a)
P"(a) = f"(a): 2C = f'la) = C= %f”(a)




236 O CHAPTER3 DIFFERENTIATION RULES

Thus, P(z) = A + B(z — a) + C(x — a)?® can be written in the form
P(z) = f(a) + f'(a)(x —a) + 3f"(a)(z — a)*.

EN
o~

4. From Example 2 in Section 3.11, we have f(1) = 2. f’(1) = . and

o f

fl(m):%($+3)_1/2-SOf//(.'E):*jll(E‘}‘?))_&/Z = %F
(1) = —3—12. From Problem 3, the quadratic approximation P(z) is

VT3~ f1)+ ()@ —1)+ L 1)z 1) ! 10

:2—{—%(:0—1)—&(9:—1)2 -1

The figure shows the function f(z) = v/ + 3 together with its linear approximation L(z) = %m + % and its

quadratic approximation P(z). You can see that P(z) is a better approximation than L(z) and this is borne out by

the numerical values in the following chart.

from L(z) actual value from P(x)

3.98 1.9950 1.99499373 ... | 1.99499375
V4.05 2.0125 2.01246118 ... | 2.01246094
Va2 2.0500 2.04939015 ... | 2.04937500

5. Tn(z) = co + c1(z —a) + ca(z — a)? +cs(z—a)®+- Fca(z—a)" Ifweputz =ain this equation, then all
terms after the first are 0 and we get Ty, (a) = co. Now we differentiate T () and obtain
Th(z) = c1 + 2c2(z — a) + 3es(z — a)? +4des(z —a)® + -+ nen(z — a)™~!. Substituting z = a gives
T/ (a) = ci1. Differentiating again. we have
TV (z) = 22 + 2 3ca(z — a) + 3 - dea(x — a®) 4+ (n—1)nca(z — a)" % and so Ty, (a) = 2c2. Continuing
in this manner, we get
T (z) =2-3c3 +2-3-dea(zc —a)+ -+ (n— 2)(n — 1)nen(x — a)""*and T, (a) = 2 - 3cs.
By now we see the pattern. If we continue to differentiate and substitute z = a, we obtain T,(f)(a) =2-3-4cq and

in general. for any integer k between 1 and n,

T,(Lk) a
T®(q)=2-3-4-5 - kek =klex = ox= k!()
, - % ()
Because we want %, and f to have the same derivatives at a, we require that ¢, = fork=1.2,...,n

k!
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2! !
equation we need to calculate the derivatives of f at 0:

" (n) o . )
6. Tn(z) = f(a) + f'(a)(z — a) + M(m —a)?+- 4+ f—ﬁ(w — a)". To compute the coefficients in this

f(z) =cosz f(0) =cos0 =
f'(z) = —sinz f'(0) = —sin0 =
f"(z) = —cosz f7(0) = -1
f"(z) =sinz f0)=0

f®(z) = cosz F90) =1

We see that the derivatives repeat in a cycle of length 4. so £ (0) = 0, f(6)(0) =-1, f(7)(0) = 0. and

F®(0) = 1. From the original expression for T, (z). with n = 8 and @ = 0, we have

7 1 . (8)
To(@) =10+ 1O -0+ L0 0 4 L@ g, S O gy

1

-1, 3
=1+0-z+§z +0- -z —1—4!

-1 1
m4+0~w5+a$6+0~x7+§z8

2 4 6 8
_qo% 2t a2t et
2041 6 " gl

2 4 6 8
and the desired approximation is cosz s 1 — % + % - % + % The Taylor polynomials T%, T}, and Ts

2
consist of the initial terms of T up through degree 2. 4, and 6, respectively. Therefore, Tp(z) = 1 — %
2 4 2 4 p
z z x X z
T4(a:):1—E-l-z,andTe(m):l_E_FZ’__B_!.

We graph T», Ty, Ts, T, and I

[

Ty T,

T

Notice that T (z) is a good approximation to cos z near 0. Ty(x)

is a good approximation on a larger interval,
Ts(z) is a better approximation. and Tg(z)

is better still. Each successive Taylor polynomial is a good
approximation on a larger interval than the previous one.
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3 Review
CONCEPT CHECK

_ d
1. (a) The Power Rule: If n is any real number, then %(x") = nz™ . The derivative of a variable base raised to a

constant power is the power times the base raised to the power minus one.

(b) The Constant Multiple Rule: If ¢ is a constant and f is a differentiable function, then % [ef(z)] =c % f(z).
The derivative of a constant times a function is the constant times the derivative of the function.

(c) The Sum Rule: If f and g are both differentiable, then % [f(z) + g(z)] = d%; f(z)+ % g(z). The derivative
of a sum of functions is the sum of the derivatives.

(d) The Difference Rule: If f and g are both differentiable. then % [f(z) — g(z)] = % f(z) — diia_: g(x). The
derivative of a difference of functions is the difference of the derivatives.

(e) The Product Rule: If f and g are both differentiable. then % [f(z)g(z)] = f(z) Ed; g(z) + g(z) dﬁx- f(z).

The derivative of a product of two functions is the first function times the derivative of the second function plus

the second function times the derivative of the first function.

d d
d [ f(z) 9(z) o f(x) = flz) o 9(z)
(f) The Quotient Rule: If f and g are both differentiable, then — [ ] = x 5 z .
dz | g(x) [9(=)]
The derivative of a quotient of functions is the denominator times the derivative of the numerator minus the

numerator times the derivative of the denominator, all divided by the square of the denominator.

(g) The Chain Rule: If f and g are both differentiable and F = f o g is the composite function defined by
F(z) = f(g(x)). then F is differentiable and F" is given by the product F'(z) = f'(g9(z))g (). The
derivative of a composite function is the derivative of the outer function evaluated at the inner function times the

derivative of the inner function.

2 @Qy=z" = Y =na" ! byy=e" = y =¢
©y=d = y =a"lna @y=hz = y =1/
@y=log,z = ¢y = 1/(zIna) (f)y=sinz = y =cosz
(g y=cosz = Yy =-—sinz hyy=tanz = y =sec’T
()y =cscax = y =—cscT cotT ()y =secx = y =secztanz
(k) y =cotz = y = —csc’x Hhy=sin"'z = y =11 -2?

(m)y:cos_lx = y':——l/\/l—ﬂv2 (n)yztan—lx = y’:l/(1+x2)
(p) y = coshz = y =sinhz

(q) y = tanhz = y' = sech’z (Hy=sinh™'z = y =1/v1+a®
(S)y:coshﬂlz = y':l/\/x2—1 (t)y:tanh'lm =4 y':1/(1—:c2)

et —1

(0)y =sinhz = y =coshz

=1.

3. (a) e is the number such that rleB

(b)e= 1'1mo(1 +z)/°
xr—
(c) The differentiation formula for y = a® [y =a"Inal is simplest when a = € because Ine = 1.

(d) The differentiation formula for y = log, © [y =1/(zln a)] issimplest when a = e because Ine = 1.
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(a) Implicit differentiation consists of differentiating both sides of an equation involving z and y with respect to x,

(b) Logarithmic differentiation consists of taking natural logarithms of both sides of an equation y = f(z).
simplifying. differentiating implicitly with respect to z. and then solving the resulting equation for y’.

- The second derivative of a function f is the rate of change of the first derivative f'. The third derivative is the

derivative (rate of change) of the second derivative. If [ is the position function of an object, f is its velocity

TRUE-FALSE QUIZ

LA 2 d
. True. o (tan®z) = 2 tanz sec? z. and o (sec®z) = 2 secx (secz tan z) =2 tanz sec® z.

False. f(z) =2’ + 2| =2+ zforz > 0or < -land |2® + 2| = —(@®+z)for-1 <z <0.So0
f@)=2z+1forz>00rz < —land f'(z) = —(2z + 1) for -1 < z < 0. But 2241/ =2z +1

’ _ 4 /
= g@=5" = g2 = 5(2)* = 80, and by the definition of the derivative.

2
F . . R . dy . ..
alse. g2 the second derivative while (E) 1s the first derivative squared. For example, if y = z, then

4
and then solving the resulting equation for y/'.
5
function, f" is its acceleration function, and f"" is its jerk function.
6. (a) The linearization L of f atz = ais L(x) = f(a) + f'(a)(z — a).
(b) If y = f(z). then the differential dy is given by dy = f'(z) dz.
(¢) See Figure 6 in Section 3.11.
1. True. This is the Sum Rule.
2. False. See the warning before the Product Rule.
3. True. This is the Chain Rule.
4. True by the Chain Rule.
d f'(Vz)
5. False. — = i
alse.  —— (V) NG by the Chain Rule.
6. False. e” is a constant, so y' = 0.
d oz
7. False. — 10 = 10%In 10
dz
8. False. In10is a constant. so its derivative is 0.
9
10.
fore > —Zand 22 4 1| = —2z — 1 forz < -1
. True. g(z) =25
im 9(2) — 9(2)
lim =22 3% _ 19y
sm p— g9'(2) = 80.
2
12.
d2y dy 2
ﬁ = O. bU[ (a) = 1.
13.

False. A tangent line to the parabola y = 22 hag slope dy/dz = 2z. 50 at (—2,4)

the slope of the tangent is
2(—2) = —4and an equation of the tangent line is y—4=

—4(x + 2). [The given equation,
Y —4=2z(z+2).is not even linear!]
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EXERCISES

Ly=(e'-32+5)" =

’_ 4 2 2 d
y' =3(z* - 3z% +5) E(w4—3x2+5) = 3(z* - 32% 4 5) (42° — 62) = 6z(c* — 32° +5)° (227 — 3)

— M d
2. y =cos(tanz) = y' = —sin(tanz) . (tanz) = — sin(tan z)(sec® )
1
3y =T+ _ g2y =112 4.-7/3 _ 14
Vot v T aE 3V
4 3z —2
LY = ——
V2zr+1
J = VI F1B)- Bz -2z +1)7V2(2) 22+ 3(2z+1) - (Bz=2) 3z +5
(VaT1) TR N TR LR R
5y=2zvz2+1 =
) 2 2 2 2
y =2z 3(2®+1)77 (22) + V2T +1(2) = W B Cite ko 2020 +1)
Vi +1 2 +1 2 +1
by= e® J = (1+x2)e$—em(2m) _ex($2—2w+1) e®(z —1)°
1+2? (1+22)* 1+a2)?  (1+2?)’

in in d . i i
1Ly=em? = 4 =¢ 2 7 (sin 26) = e % (cos 26)(2) = 2cos 20 esn 2

y=e (P -2+2) =
Y = e t(2t—2)+ (-2t +2)(-e) = e t(2t—2-t>+2t-2) = e7t(—t* + 4t —4)

oy=—— = = (1-) (1) —t(=2t) _1-£+2° 41
' 1—1t2 (1—t2)2 (1_t2)2 - (1—t2)2
10. y = sin~ (%) —__——— L% = /1' ppr

)2

Ny=ze'/® = y = ze Y/ (1/2%) + e /7.1 =e V2 (1/z+1)

12y=ze" = Yy = z"(se®") + e (rz”™ ') = e sz +T)

13. y=tany1—-2z = y’:(sec2\/ )<2\/1—:_x>( 1) = 2\/11_:—;:
14. Using the Reciprocal Rule, g(x) = }—(1;) = ¢(x)=-— [;(501);2 .we havey = m =

__cos(z —sin z)(1 — cos x)
v= sin?(x — sin ) ’
d
15.%(zy4+m2y):a—m(:ﬂ+3y) = x~4y3y'+y4~1+x2-y’+y<2m:1+3y' =
1—y4—2:ry
! 3 2 — T (S iad
y(4wy +x 3) 11—y 2zy = Y pr R

= ; "= _ csc b cot 5z)(5) = —5cot Sz
16. y = In(cscbz) = ¥ csc5ac( csc bz cot 5z)(5)
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17, 4 — sec 20
14 tan26
,_ (14 tan26)(sec20 tan26 - 2) — (sec 20) (sec® 26 - 2) _ 2sec26 [(1 + tan 26) tan 26 — sec? 26
- (14 tan26)2 B (14 tan26)2
_ 2sec 26 (tan 20 + tan® 26 — sec? 20) _ 2sec2f (tan26 — 1) [1 +tan?z — sec? x]
(14 tan26)2 (1 + tan26)2
d 2 . d 2 . / / /
18 o (¥ cosy+sin2y) = = (ay) = o*(~siny-y) + (cosy)(22) +cosy -2 =3y +y-1 =
— 2z cosy
2 —z)=y—9 r_ Y
y( z”siny + 2 cos 2y :1:) Yy—2zcosy = y 3cos2y —lsiny -7
19. y = e“(csinz — cosz) =
Y = e“(ccosz +sinz) + ce(csinz — cos )
=e“(c’sinz — ccosz + ccosz +sinz) = e*(’sinz +sinz) = e“sinz (® + 1)
2. y= ln(wzez) =lnz’+Ine®* =2lnz+z = y=2/z+1
Ny=e" = ¢ =¢° a (€%) = e e® = & t"
-y Y dz
2 y=sec(l+z?) = y':2zsec(1—|—x2) tan(1 + z?)
By=(1-z)" =
=11 -2 P (le )] = —(1 - 1/2) 2272 = —((z - 1)/z) 7% = ~(z - 1)~
By=@+va)" = y=_l@+yz) “/3<” >
2V
5. sin(zy) =2 -y = cos(zy)(zy' +y 1) =20 -y = zeos(zy)y' +y' =2z — ycos(zy) =
Ylweos(zy) + 1) = 2 — yoos(ay) = o = 2Z=ycos(zy)
zcos(zy) + 1
2. y=/siny/z = ¢ = %(sin\/a_:)q/z(cos\/a—:)(L) LV
2vz 4+\/xsin\/z
2]. y = logs(1+ 2z) = y':; (1+22)= 2
(1+2z) In5 dz (I1+2z)1n5
’ 1
8.y = (cosz)® = Iny =In(cosz)®* = zlncosz = <L =x- “(=sinz) +Incosz-1 =
y cosz
= (cosz)*(Incosz — x tan z)
29. y = Insinz — %sinzm = 3y = - CoOST — % *2sinz - cosz = cot z —sinzcoszx

sinz
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30, 4 — («® +1)*
YT 2z + 133z - 1)°
(z* +1)* 2 4 3 5
Iny =1 =1 1) - -1
ny =In Gt 1Bz 1F n(z? + 1)* — In[(2z + 1)°(3z — 1)°]
= 41n(z?® +1) — [In(2z + 1) + In(3z — 1)°] = 4In(z® +1) - 3In(2z +1) = 5In(3z - 1) =
¥ _y. 9z — 3. 25 g
PRI R P wo1 S 7
. (z? +1)* gz 6 15
V= et 1@z —1p\e?+1 2z+1 3¢-1)

3.

32.

34.
35.

36.

37.

39.
40.

a.

[The answer could be simplified to y =—

(1:2 + 56z + 9) (:1:2 + 1)3
(2z + 1)*(3z — 1)8

. but this is unnecessary.]

1 4
y=gztan '(4z) = y =z m ‘4+tan"'(4z) 1= —iTlmﬁ—a:E + tan™!(4z)
y= e fcos(e”) = y =€ (—sinz)+ [~sin(e®) - e”] = —sinze™ " —e” sin(e”)
. y = In|sechz + tan5x| =
, 1 9 5 sec 5z (tan 5z + sec 5x)
= ———(sechz tan5z - 5 5z -5) = _ 5sech
Y = Sechz + tan bz (sec5z tan5z -5 + sec 5z - 5) sec 5z + tan 5z secor
y=10""" = o = 1022 ™ . 1n 10 - sec® 76 - m = m(In 10)10%" ™ sec®

y=cot(3z> +5) = y =- csc?(3z® + 5) (6z) = —6z csc?(3z% +5)

y=+/thn(t*) =

’
Y

2 L ()] = — e - |1 In(? R
=1 [tin(t")] 7 [tIn(t")] W) [1 In(t*) +¢ v 4t}
B 1 (£ _ In(t*) +4
" 2/thn(th) [n(t") +4 2 /tIn(t%)

Or: Since y is only defined for ¢ > 0. we can write y = vt - 4Int = 2VtInt. Then

t

- Vitlnt

=2 L . <1 -Int+t- l> _ It 1. This agrees with our first answer since

2Vtint

In(t*)+4  4lnt+4 _ 4(lnt+1) Int+1

5 Jilm(th) 2vt-4lnt 22Vt T Vitlnt
y=sin(tanVI+2%) = y’——-cos(tan\/l+m3)(seczs/1+m3)[39:2/(2\/1+x3)]
1

. y = arctan(arcsin /T ) = y =

1 1
1+ (arcsin/z)* VI—= 2z

y = tan’(sin #) = [tan(sin 0)]> = o =2[tan(sin 6)] - sec?(sin 6) - cos 0

ze¥ =y—1 = ze¥y +e¥ =y = eV =y —xe¥y = y =e¥ /(1 —xze)

!

Y

/

Yy =

—T 5
y :i+—1(—2—'—:—r)— = lny:%ln(m—i—l)+51n(2~m)—71n(z+3) =

(z+3)"
1 —5 7 , Vzti@e-x)° 1 5 7
g = 0+ — - = Yy = = 1 —2_ — +3 or
2z +1)  2-z x+3 (z +3) 2(x + 1) T

_ (2—=x)"(3z” — 552 — 52)
2z + 1(z + 3)8 )
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(z+ M) L @AY AN+ NP - (2 + N(4z’) 4z + AP (A - Az?)
= = =

2 y= = =
RPTIEY Y (w +2%)° (zt+%)°
3. y= xsinh(acz) = 3y = xcosh(mQ) - 2z + sinh (:cz) -1 =222 cosh(zz) + sinh(xz)
M.y = (sinmz)/z = y = (mzcosmz —sin mz)/z?
4. y =1In(cosh3z) = 4y = (1/cosh 3z)(sinh 3z)(3) = 3tanh 3z
2 2z 2 2(z + 1)(z +4)
—InlZ - 2 _y|_ = —
By=ln 2x+5, R R Bl it e B s L @+ 2@ - 22z 15)
a = (sinh ) , 1 osh z cosh z
.y =cosh™ = Y = coshr = ——
y = cosh™ (sinhz y b2 1 S
1 1 _ VT
_ -1 o -1 - — 1
8.y ==ztanh™'\/z = ¢ =tanh \/:Z—thl “EPIvE tanh™'\/z + 20 —2)
B fO)=VE+T = ft)=3at+1)"V2 4=2014t4+1)2 =
FU8) = 2=3) (4t + 1) 4= —a/(4t + 1) 50 f"(2) = —4/9%/2 = _ L.
50. g(0) = 0sinf = ¢'(§) =0cosh +sinh-1 = 9"(0) = 0(—sinB) 4+ cosf- 1+ cos# = 2cosd — Osin 0.
50 9" (m/6) = 2cos(n/6) - (w/6) sin(/6) = 2 (V/3/2) — (n/6)(1/2) = v/3 m/12.
.2°+45=1 = 645 +6y°y =0 = o = -/ =
v V05— Eyty) sty ly—w(=at)] st [0 +at) ] _5at
r (v°)? o y'o o ¥ oyt
.f@)=2-2)"" = f@)=2-2)% = f(z)=202- ) = f2)=2-32-2)"% =
—(n n!
f(4)(x) =2-3-42-2)75% In general, f(")(x) =2-3-4-.... n(2 — ) (n+1) (27)(""'1)
53. We first show it is true for n = 1: f(@)=ze® = f'(z)=ze® +¢* = (z +1)e”. We now assume it is true
forn =k: f®(z) = (z + k)e®. With this assumption, we must show it is true forn = k + 1:
d d
FE D () = = [f“‘)(x)} = @R =@+ ke +e" = [+ k) +1]e” = [c + (k + 1))e”.
Therefore, f(™)(z) = (z +n)e” by mathematical induction.
3 t% cos® 2t 1 cos® 2t 1 1
54. lim ——— = lim ——=* _ |; 32t . =i = ==
0 tand 20 sin® 2t e 908 sin® 2t i i S0 2 R
(2t)3 (&‘% 2t )
%.y=4sin®z = y =4 2sinzcosz. At (2.1).4/ =8. :. @ = 2/3. 50 an equation of the tangent line is
y-1=2V3(z~I) ory=2v3z+41 ~m/3/3.
-1 *+1)(2z) — (2° - 1)(2 4
56. y = ;“H = y = e+ )((zg + SQ = = ($2‘f1)2~ At(0,-1). 4 =0, so an equation of the
tangent lineisy + 1 = O(x —0),ory = —1.
5. y=1+4sing = y = %(1 +4sinz) "2 . 4eosz = 2cosz

2
e At(0,1).y = 2 =9
V1+dsing 0.1).y Vi1 soan

equation of the tangent line is y — 1 = 2(x - 0).ory =2z +1.
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58. 2% +4zy +y° =13 = 2z +4(zy +y-1)+2yy =0 = 422y +2y+yy =0 =
oy +yy =-—x -2y = yzty)=-z-2y = ’:———ﬂy.At 2,1 ’:~2_2:—é
y 2 +y (2,1).y i1 5,50

an equation of the tangent lineisy — 1 = ~4(z-2).0ory = —dr

5. y=(2+2)e™® = y =(2+z)(—€ e ) 4e T 1=e"[-2+z)+1 =" (—z —1). At (0,2).
y' = 1(—1) = —1, so an equation of the tangent lineisy—2=—1(z —0),ory = —z + 2.
60. f(z) = ze™* = f'(z)= z[e™*(cos z)| + e (1) = e5™*(z cosz + 1). As a check on our work, we

notice from the graphs that f'(z) > 0 when f is increasing. Also. we see in the larger viewing rectangle a certain
similarity in the graphs of f and f’: the sizes of the oscillations of f and f’ are linked.

61. @) f(z) =zV5—2 =
Fla) =a[36-2) 0] +VETE = 52—

__ =t +2(5—x)_—x+10—2mr 10 — 3z
2v6—z 2/5-=z 2vE-z 25—z
(b) At (1.2): f'(1) = 2. So an equation of the tangent line isy—2=I(zx—1)ory= Tz + 5
4)ory=-—z+8.

+V5-z- ;23\/——*?5

At (4,4): f'(4) = —% — —1. So an equation of the tangent line is y — 4 = —1(z —

(© 10 @ 45

@4 et

(1.2) ’ ,
-10 10 N

-1 45
% N

~10 -25
The graphs look reasonable. since f is positive where f has tangents

with positive slope, and f " is negative where f has tangents with

negative slope.

62 (a) f(z) =4z —tanz = f'(z)=4- secz = f'(z)=—2secz(secz tanz) = —2 sec? x tanz.

We can see that our answers are reasonable. since the graph of f' is

(b)

0 where f has a horizontal tangent, and the graph of f' is positive

where f has tangents with positive slope and negative where f has

tangents with negative slope. The same correspondence holds

between the graphs of " and f”.




63.

64.

65.

66.

67.

68.

69.

70.

n.

72.

13.

14,

5.

76.
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y=sinz+cosz = ¢ =cosz—sinz=0 < cosz =sinzand0<z <25 < x:%ori—",sothe
points are (§,v/2) and (3£, —/2).

42 =1 = 2% +4yy' =0 = Yy =—2/(Y)=1 & z= —2y. Since the points lie on the ellipse,

we have (—2y)2 +2° =1 = 6yP=1 = y= :i:%. The points are (—%, %) and (\/- \/-)

f(a:):(x—a)(a:—b)(x—c) = f’(m):(a:—b)(a:—c)—i—(z~a)(x—c)+(z—a)(m—b).So
f’(:c)_(a:—b)(:v—c)+(m—a)(:v—c)+(a:—a)(:1:—b)_ 1 1 1
flz) (z —a)(z —b)(z —c) _a:—a+a:—b+:c—c'

Or: f(z) = (x—a)(z—b)(z —¢c) = lnlf(m)[:1n|m—a|+ln|x—b|+ln|x—c| =

f'(z) 1 1 1
flz) z—a z-b z-c

2

(a) cos 2z = cos®z — sin’z = —2sin2z = —2coszsinz — 2sinzcosz < sin2z = 2sinx cosx

(b) sin(z + a) =sinzcosa + coszsina = cos(z + a) = cosT cosa — sin z sin a.
@ h(z) = f(z)g(z) = N(z)= f(z)g'(z) +g(z)f'(z) =
W(2) = f(2)g'(2) +9(2)1'(2) = (3)(4) + (5)(~2) = 12— 10 = 2
®) F(z) = f(9(z)) = F(0)=f(9@)d(x) = F'@)=f(g2)d(2) = F(5)4) =114 aa

f
f
@ P(z) = f(z)g(z) = P'(z) = f(2)g'(z) + g(x)f'(z) =

(Q)f’( )= f(2)g'(2)  (4)(-1) _
T A— i6
© C(z) = f(9(x)) = C'(z) = f(9(2)g'(z) =

C'(2) = f'62)g'(2) = £'(4)9'2) = (£8) @) = (3)2) = 6

f@)=2%(2) = f(2) =1 (c)+g(z)(2) = 2 [z’ (z) + 29(z)]
Ha)=9(@*) = [f'(2)=g'(a*)(20) = 22¢'(c?)

@) =l9@) = f'(2)=2[g()] ¢'(z) = 29(2)g/ (x)
f@)=g(9(x) = f'(x)=g'(9(z))g ()

f@)=g(e") = f(z)=g'(e*)e"

f@) =@ = f(z) = 9@y ()

f@)=lg@@)| = fl(z)=— g'(z)=9 @)

9(93) g(m)
f(z) =g(lnz) = f'(z) = g'(Inz) - i _ g'(Inz)

T
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@)
7. (@) = 7Y+ g(0)

W (z) = [f(2) + 9(@)] [f (@)’ (2) + 9(@)f'(@)] — F(@)g(@) [f'(z) + ¢ ()]
[f(2) + 9()]®

_ @) (@) + f@)e@)f (z) + f(2)g(2)g (z) + [9(@)]” /(&) — f(@)9(2)f'(z) — f(=)g(z)g' ()
[£(z) + g())*

_ @@’ + g'()[f (@)
[f(2) + g())?

8 hg) = | LE) o h,@):f’(w)g(w)—f(z)g'(w)_f'(m)g(w)—f(m)g'(w)

g(z) f@/e@) o) 2@V [(@)

79. Using the Chain Rule repeatedly, h(z) = f(g(sindz)) =

! !/ : d . / . I .
B (z) = f'(g(sindz)) - P (g(sindz)) = f'(g(sin4z)) - ¢'(sin4z) - dix (sindz)
= f'(g(sin 4z))g’ (sin 4z)(cos 4z )(4)
80. (a) 8 (b) The average rate of change is larger on 12,3].

(c) The instantaneous rate of change (the slope of the tangent) is
larger at z = 2.
@ f(z) =z —2sinz = f'(z)=1-2cosz.s0

f'(2) =1 —2cos2 = 1.8323 and
—2 £/(5) = 1 — 2cos 5 ~ 0.4327.
So f'(2) > f'(5). as predicted in part (c).

81. y = [In(z+4)° = ¢ = 2(n(z +4)]" - ac_-li-—ﬁl 1= 212%:—4—4) andy’' =0 & In(z+4)=0 &
r44=¢" = z+4=1 & T=-3.% the tangent is horizontal at the point (—3,0).

82. (a) The line z — 4y = 1 has slope . Atangenttoy = e has slope L wheny =e€” = % =

z=1In}=—In4. Sincey = ¢®. the y-coordinate is & and the point of tangency is s (—In4, §). Thus. an

equation of the tangent line is y — i= Lz +md)ory= ir+ i(ln4+1).

(b) The slope of the tangent at the point (a,e®) is —j—£ e’ — . Thus, an equation of the tangent line is
r=a

y—e* =e(x— a). We substitute T = 0.y = 0 into this equation, since we want the line to pass through the
origin: 0 —e* =e*(0 —a) & —e* =¢%(—a) & a=1.Soan equation of the tangent line at the point

(a,e*) = (l,e)isy—e= e(z — 1) ory = ex.
83 y=flz)=az’ +bx+c = f'(x) = 2az + b. We know that f/(—1) = 6and f'(5) = —2.s0 —2a+ b=26
and 10a + b = —2. Subtracting the first equation from the second gives 12a = -8 = a= —3. Substituting

fora1ntheﬁrstequat10ng1vesb——— Now f(1) =4 = 4=a+b+ec soc—4+—*14—0and

hence, f(z) = —22° + Lz
84. (a) lim C(t) = lim [K(e™® — e )] = K lim (e7® — e7t) = K(0 — 0) = 0 because —at — —oo and
t—oo t—oo

t—oo

—bt — —o0 ast — 00.
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86.

87.

88.

89.

90.

91.

92.
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b)) Ct)=K(e™ —e™®) = C'(t)=K(e *(-a) - e™"(=b)) = K(—ae™® + be~*)
In(b/a)

b—a

SIS

b
©C't)=0 = bett=ge ™ = =elmatdt o e b-—a)t = t=

s(t) = Ae™ " cos(wt + 6) =

v(t) = s'(t) = A{e™" [~wsin(wt + 6)] + cos(wt + 8)(—ce™t)}
= —Ae™ [wsin(wt + §) + ccos(wt + 8] =

a(t) =v'(t) = —A{e”"*[w? cos(wt + §) — cwsin(wt + )] + [w sin(wt + 8) + ccos(wt + 8)](—ce ")}
= —Ae™ ' [w? cos(wt + &) — cwsin(wt + §) — cwsin(wt + 8) — ¢* cos(wt + 6)]
= —Ae”"*[(w? — &) cos(wt + &) — 2w sin(wt + §)]
= Ae“"t[(cz — w?) cos(wt + &) + 2cw sin(wt + )]
@z=vbt?+c2 = o)== [1/(2 m)] 2%t = GtV ¥ 22 =
AV + 22 — 2t (c2t/\/m) b2e?

a(t) =v'(t) = b2 + c2¢2 = (b2 + c2t2)3/2

(b) v(t) > 0 for ¢t > 0, so the particle always moves in the positive direction.
@y=t"-12t+3 = o(t)=y =32 -12 = a(t) =v'(t) =6t
(b) v(t) = 3(t* — 4) > 0 when t > 2. 50 it moves upward when ¢ > 2 and downward when 0 < ¢ < 2.
(c) Distance upward = y(3) — y(2) = —6 — (—13) = 7.
Distance downward = y(0) — y(2) = 3 — (—13) = 16. Total distance = 7 + 16 = 23.

72 [r constant]

AV = %T(‘T‘Qh = dV/dh = %
by V= %wrQh = dV/dr = %wrh [h constant]

The linear density p is the rate of change of mass m with respecttolengthz. m=z(1+ z) =z + 232 =
p=dm/dz =1+ 3./z. so the linear density when z = 4 is 1 + 3V4 =4kg/m.
(@) C(z) = 920 + 2z — 0.022% + 0.00007z% = C'(x) = 2 — 0.04z + 0.00021>

(b) C'(100) =2 -4+ 2.1 = $0.10/unit. This value represents the rate at which costs are increasing as the
hundredth unit is produced, and is the approximate cost of producing the 101st unit.

(c) The cost of producing the 101st item is C(101) — C(100) = 990.10107 — 990 = $0.10107. slightly larger
than C”(100).

Ifz = edge length, then V = 2° =  dV/dt = 352 de/dt =10 = dz/dt=10/(322)and S = 622 =
dS/dt = (12z) dz/dt = 122(10/(32%)] = 40/z. When z = 30, dS/dt = §3 = % cm? /min.

Given dV//dt = 2, find dh/dt when h = 5. V — 27r2h and, from similar

. T 3 7 (3h\? 3m
t les, - = — V==[Z = —— 3_

riangles 5= 10 = 3 <10) h IOOh SO

_dV _ 97 ,dh dh 200 200 10

= = —_—
dt 100 dt dt  9rh?  9r (52  Or
when h = 5.
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93. Given dh/dt = 5 and dz/dt = 15. find dz/dt. 2° = z° + h* =

dz dx dh dz 1 <
2: %% =2 = 4 2h — Z - : =3, "
z T + 7 > o z( 5z + 5h). Whent = 3
h=45+3(5)=60andz = 15(3) =45 = =z = V452 +60% =75.50 ' x
dz
i L [15(45) + 5(60)] = 13 ft/s.
4
94. We are given dz/dt = 30 ft/s. By similar triangles, ¥_ =
z 241 =
= y——i—zsod—yﬁii{—ﬂ—’v??ﬂ/s \4/: Y )
Vo4l T dt a4l dt o V24l ' i = o
95. We are given df/dt = —0.25 rad/h. tan6 = 400/z =
v = 400cotd = °Z = —400csc? D When 6 = z.
dz _ 400(2)%(—0.25) = 400 ft/h .
dt (=0. - /h. | Y |
9%. (a) f(x) = V25— 22 =
/ —2z 2y—1/2 .
)= ————==-x(20 -z . So the linear
f@ == ")

approximation to f(x) near 3 is

f@) = f3)+ ' B3) e —3)=4—{(z—3)

(c) For the required accuracy, we want v/25 — 2 -01<4-3(z-3)

and 4 — & (z — 3) < V/25 — 2 +0.1. From the graph. it appears that
these both hold for 2.24 < z < 3.66.

97. (@) f(z) = ¥T+3z=(1+ 3z)Y% = f(x)=(1+ 3x)~%/3, so the linearization of f ata = 0is
L(z) = f(0) + f'(0)(z — 0) = 11/3 417233z =1+ . Thus, V1 +3z=1+2z =

¥1.03 = ¢/1+ 3(0.01) ~ 1+ (0.01) = 1.01.
(b) The linear approximation is 31+ 3z =~ 1 + z, so for the required
accuracy we want /1 +3z — 0.1 <1+4+z < 1+ 3z +0.1. From

the graph, it appears that this is true when —0.23 < « < 0.40.
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99.

100.

101.

102.

103.
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y=2"-22"+1 = dy= (32" — 4z)dz. Whenz = 2 and dz = 0.2. dy = [3(2)* - 4(2)](0.2) = 0.8,

A:wz-i—%ﬂ(%:c)z:(l—}-%)zz = dAz(Q—}—%).rdx.

=

When & = 60 and dz = 0.1.dA = (2 + )60(0.1) = 12 + 3% 50

the maximum error is approximately 12 + 37” ~ 16.7 cm?.

17
oz =1 fd gy _ 16 __
alll»n1 1 —[dxa: Jm_l—17(1) =17

4 _ 1 1

i YI6+h—2 [d Yz — 1p-8/4 = 3 =25

7m0 h de V7l _ . ==16  4(y16)° 32
im cosf —0.5 icos0 — _sin ¥ = _ﬁ
o—x/3 0—7/3 — |do 0=m/3 B 3 2

i v1+tanz — /1 +sinz i (\/1+tanx—\/1+sina:)(\/l+tan:c+\/l+sinx)
1m = 1m
20 x3 =0 z3 (\/1+tanz+\/l+sinx)

- lim (I+tanz) — (14sinz) lim sinz (1/cosz — 1) cos
1—+0w3(\/1+tan$+\/1+sinm) ar*0:53(\/1-+~ta.n:c+\/1—|~sinm) cosz
_ sinz (1 — cos ) 1+ cosz

m )
2=0 23 (/T +tanz + /1 +sinz)cosz 1+ cosz
m sinz -sin? z

20 23 (/T + tanz + /1 +sinz ) cosz (1 + cos z)

. sinz . 1
= (hm —) lim
z—0 @—0 (\/1+tanz+\/l+sina:)cosz'(1+cosx)
3. 1 _1
(VI+VI) 1-(1+1) 4

Differentiating the first given equation implicitly with respect to  and using the Chain Rule, we obtain
1 . .
flg)) =2 = flgz))d(z)=1 = g'(z) = @) Using the second given equation to expand the

. . . . 1
denominator of this expression gives g'(z) = TF @ But the first given equation states that f(g(z)) = z.

1
14 z2°

sog'(z) =

d
Iz (f(2z)] =2 = f'@ez)-2=2% = f'(2z) = L2® Lett = 2z. Then flit) = %(%t)2 = 142
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106. Let (b, c) be on the curve, that is, /% + ¢*/3 = a*/*. Now 22342 =a?® = 274 %y‘l/g% =0,
z
1/3
L
dz xl/3

lineis y — ¢ = —(c/b)/3(x —b) ory = —(c/b)*z + ¢+ b2/3c'/3). Setting y = 0. we find that the z-intercept
p

1/3
= — (Q) .so at (b, c) the slope of the tangent line is —(c/b)l/3 and an equation of the tangent
z

is b1/3¢2/3 4 b = b'/3(c*/® + b*/®) and setting z = 0 we find that the y-intercept is

c+ b33 = 01/3(62/3 + b2/3). So the length of the tangent line between these two points is

\/[;1/3(62/3 + b2/3)]2 + [c1/3(c2/3 + bz/s)]2 — \/;/3012/3)2 + Cz/s(az/a)2

— /(b2/3 + ¢2/3)a4/3 = Va2/3g4/3

= +va? = a = constant



[1 PROBLEMS PLUS

1. Let a be the z-coordinate of Q. Since the derivative of y=1-z2isy = —2z. the slope at ) is —2a. But since

the triangle is equilateral. AO/OC = V/3/1. so the slope at Q is —+/3. Therefore, we must have that —2a = -3

= a= ﬁg Thus, the point Q has coordinates <3§ 1- (%) ) (£ 1) and by symmetry, P has

coordinates (—-@ 1).

24

2y=2°-3z+4 = y' =32 -3.andy =3(a% - z) = 3 -x) 39
y' =6z — 3. The slopes of the tangents of the two curves are equal
when 32” — 3 = 62 — 3; that is. when z = 0 or 2. Atz = 0. both (2.6)
tangents have slope —3. but the curves do not intersect. At z = 2. L/ Ic;]rgg:t,.;me J

< s and the curves intersect at (2, 6). So
both tangents have slope 9 an c (2,6) S wa—T,

there is a common tangent line at (2, 6). y = 9z — 12.

3. Lety = tan"! z. Then tany = x. so from the triangle we see that

sin(tan™! z) =siny = ﬁ Using this fact we have that 1+x2 .
sinh z __ sinhz

sin(tan™" (sinhz)) =

= = tanhz. H .

sin™!(tanh ) = sin™! (sin(tan™"(sinh z))) = tan~"(sinh z).

4. We find the equation of the parabola by substituting the point (—100, 100), at which the car is situated. into the
general equation y = az?: 100 = a(~100)> = a = -1 Now we find the equation of a tangent to the
parabola at the point (2o, yo). We can show that y' = a(2z) = 1—(1)(](2117) = £5. S0 an equation of the tangent is
Y — Yo = z5To(x — o). Since the point (o.yo) is on the parabola, we must have Yo = Ta5T3. SO our equation of
the tangent can be simplified to y = Floa:g + %:co(:z: — Zo). We want the statue to be located on the tangent line, so

we substitute its coordinates (100, 50) into this equation: 50 = i-25 + =T0(100 — x9) =

5 = 20020 + 5000 =0 = g = L [200 +,/200% — 4 (5000)} = 2o = 100 + 501/2. But

Zo < 100, so the car’s headlights illuminate the statue when it is located at the point

(100 — 50 /2,150 — 100 \/5) A~ (29.3,8.6). that is. about 29.3 m east and 8.6 m north of the origin.

251
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w3

Lo . d .
5. We use mathematical induction. Let Sy, be the statement that ——= (sin® z + cos® z) = 4"~ cos(4z + n/2).
S is true because
e (sin® z + cos’ z) =4 sin® z cos ¢ — 4 cos® zsinz = 4sin z cos z (sin® z — cos’ z)
— _4sinzcosz cos 2z = —2sin 2z cos 2z = — sin 4z = sin(—4x)

=cos(Z — (—4z)) = cos(F +4z) = 4" ' cos(4z +n%) whenn =1

k

Now assume Sy is true, that is, Tk (sin4 z + cos* 1) =4kt cos(4a: + k%) Then
ey 4 d[d . 4 4 d [ k—
ey (sin® z + cos z) = = | 7% (sin® z + cos :E)] =4 [4 ! cos(4z + k%)]

= —4*'sin(4z + k) - Ed; (4z + k%) = —4" sin(4z + k3)

=4 sin(—4z — k%) = 4" cos(% — (—4z — k%))
=4"cos(dz+ (k+1) %)

which shows that Sky1 is true.
u3

d . - . L .
Therefore, = (sm4 « + cos® :v) = 4" cos(4z + n%) for every positive integer n, by mathematical induction.

Another proof: First write

. . 2 . .
sin®z + cos?z = (smza:—i-cosz:v) —2sin®zcos’z =1— %sm22x =1- i(l—cos4m) = % +%1cos4w.

I n

Then we have ey (sin4a:+cos4cc) = (% + 3 cosdzx) = 34" cos(4m+n§) = 4" cos(4z +n%).

n
T _ _ 1
= gl gt 14—

1-=z 11—z

6. If we divide 1 — z into ™ by long division, we find that f(z) =

This can also be seen by multiplying the last expression by 1 — z and canceling terms on the right-hand side. So we

(n)
1 1 .
letg(:z:):1+:c+m2+--~+m"'1,sothatf(w)zl—_—E—g(x) = fM(z)= ( ) — g™ (x). But

l1-1z
(n)
g is a polynomial of degree (n — 1), so its nth derivative is 0. and therefore (™ () = (1 — w) . Now
d -1 2(-1)=( & 1 -1 ()1 —2) 3 (-1 =201 —=)°
L gt = (- ) = (=) g™ = (A0 =T =209
il 1—2z)7! —(—3)42(1—35)—4(—1)—3-2(1—:5)—4 d—4(1—:c)_1 —4-3-2(1 —x) ° andsoon. So
dx?’( o= - " dxt ) ’

1 \™ _ n!
1—-xz T (1 —z)ntt

7. We must find a value zo such that the normal lines to the parabola y = 22 at £ = o intersect at a point one unit

after n differentiations, we will have f M (z) = (

1
from the points (%o, ). The normals to y = a? at & = o have slopes — -~ and pass through (£xo,3)
0
. . 2 1 9 1
respectively, so the normals have the equations y — o = —%—(x —xzo)andy — xp = 520 (z + xo0). The
0



CHAPTER3 PROBLEMSPLUS O 253
common y-intercept is =5 + 5. We want to find the value of zo for which the distance from (0,28 + §) to (20, 23)
equals 1. The square of the distance is (zo — 0)* + [2§ — (23 + 1)]* = 2% + i=1 & z0=2" Forthese
values of zo, the y-intercept is zj + 3 = 2. so the center of the circle is at (0.3).
Another solution: Let the center of the circle be (0, a). Then the equation of the circle is 2> + (y—a)=1.
Solving with the equation of the parabola, y = 22, we get 22 + (a:2 - a)2 =1 & 2°42* -2’ +a2=1
&zt + (1-2a)z® +a®>—1=0. The parabola and the circle will be tangent to each other when this quadratic
equation in z* has equal roots; that is, when the discriminant is 0. Thus, (1 — 2a)? — 4(a2 -1)=0 &

1-4a+4a®> -4’ +4=0 < 4a:5.soa:%‘Thecenterof[hecircleis(O,%).

i £@ = £@) _ | [f(z) ~ f(a) ﬁ+ﬁJ

. = lim M. T a
Ve Ve | Vaova Vatval =l { ‘f+fﬂ

Tz—a r—a

i BEE i (48 = 10 (a8 =24 o

9. We can assume without loss of generality that 6 = 0 at time ¢ = 0. so that § = 127t rad. [The angular velocity of
the wheel is 360 rpm = 360 - (27 rad)/(60 s) = 127 rad/s.] Then the position of A as a function of time is

y 40sin 0 _sinf

= (40cos 9, 40sin 0) = (40 cos 127t 40 sin 127t). sosina = Tom = 120 3 3 sin 127t.
(a) Differentiating the expression for sin «, we get cos « - ? = 3 -127 - cos 127t = 47 cos 6.
WhenO— wehavesma——sm9— socosa—,/ — ,/12 and
d 41 cos Z 2 4
2 = 3 T 7“/_ ~ 6.56 rad/s.

dt cosa V11712
(b) By the Law of Cosines. [AP|* = |OA[* + |OP[* - 2|0A||OP|cosf =

120° = 40° + |OP|* = 2 - 40|OP| cos§ = |OP|* - (80cos ) [OP| — 12.800 =0 =

|oP| = %(80 cos 0 + /6400 cos? § + 51,200) = 40cos 6 + 40 \/cos2 0 + 8

= 40((:050 + V8 + cos? 6?) cm  (since |OP| > 0)

As a check, note that |[OP| = 160 cm when 6 = 0 and |OP| = 80+/2 cm when § =

[NIE]

(¢) By part (b), the z-coordinate of P is given by z = 40(cos 0 4 /8 + cos2 ). so

dx dx df . 2cosfsiné cos 6
o = o =40 —sinf - ————L ) . 127 = —4807si e —
dt  df dt ( 2v/8 + cos? 0) i 7rsm6'<1 * V8 + cos? 9) em/s.

In particular, dz/dt = 0 cm/s when 6 = 0 and dz/dt = —480m cm/s when @ = 3
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10. The equation of T is y — =3 = 2z1(z — 1) = 2z1T — 2z or
y = 21T — z2. The equation of T3 is y = 2Tax — z3. Solving for the point
of intersection. we get 2z(z1 — ¢2) = 1 — T3 = T = 2 (z1 +z2).

Therefore, the coordinates of P are (3 (z1 + z2), x1x2). So if the point of

contact of T is (a. a®).then Q1 is (3(a+z1), az1) and Q2 is

(3(a+ T2),az2).

Therefore. |PQ1|* = 1(a — z2)* + 2%(a — z2)? = (a — z2)* (3 +21) and P

PQ:|? a— )’ .

||pP1 ||2 = ((m1 — mz))2,and similarly
|PQ1| + |PQ2| _ a— T2 + r —a
|PPi| ' |PP:| zi—z2 T1— T2

|PPi|* = Tz — z2)? + 23 (z1 — z2)? = (71 — z2)° (z+ z). So

P 2 _ 2
| Q2|2 = (21— a) 5. Finally.
lPPzI (:Ul — $2)

=1

n

11. Consider the statement that j— (e°® sinbr) = r"e*” sin(bz + nd). Forn = 1,
x'ﬂ

d
o (e® sinbz) = ae®” sin bx + be*” cos bz, and

re®® sin(bz + 6) = re**[sin bz cos 0 + cos bx sin 6] = re®® (% sinbz + b cos bw)
T
= ae® sinbz + be® cos bz

) b . b a
since tand = — = sinf = —andcosb = —.
a r T

So the statement is true for n = 1. Assume it is true forn = k. Then

d-t! d ok k k
o (e** sinbx) = . [r e*® sin(bz + kﬁ)] — r* e sin(bz + k6) + r°e*"b cos(bx + kO)

= r*e®[asin(bz + k6) + bcos(bx + kb))
But
sin[bz + (k + 1)6] = sin[(bz + k) + 9] = sin(bz + k6) cos 6 + sin 6 cos(bz + k6)

= g sin(bz + k0) + g cos(bzx + k0)

Hence. a sin(bz + kf) + bcos(bz + k) = rsinfbz + (k + 1)6]. So

k+1
diﬁ? (" sinbzx) = rFe®® [asin(bz + kO) + bcos(bz + kb)) = rFe®® [rsin(bz + (k + 1)6)]
T
= r*+1e®[sin(bz + (k + 1)6))
Therefore. the statement is true for all n by mathematical induction.

12. We recognize this limit as the definition of the derivative of the function f(z) = e** at x = 7. since it is of the

form lim M Therefore. the limit is equal to f' () = (cos et = -1 ce¥ = —1.
T—T xr — T
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14.
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It seems from the figure that as P approaches the point (0,2) from the right. z7 — oo and y7 — 2%, As P
approaches the point (3, 0) from the left, it appears that 7 — 3%+ and y7 — 0o. So we guess that 7 € (3, 00) and
yr € (2, 00). It is more difficult to estimate the range of values for zy and yn. We might perhaps guess that

zn € (0,3).and yn € (—00,0) or (—2,0). '

In order to actually solve the problem. we implicitly differentiate the equation of the ellipse to find the equation

2 2
2 4 . .
of the tangent line: il o 2 + —yy' =0,s0y = ~2Z Soat the point (o, yo) on the ellipse, an
9 4 9 4 9y
. 4 . .
equation of the tangent line is y — yo = -3 %o (z — zo) or dzox + Yyoy = 4z? + 9y¢. This can be written as
Yo

ToT | Yoy _ T3y
9 4 9 4
rox Yoy
=g

9 +4

= 1. because (o, yo) lies on the ellipse. So an equation of the tangent line is

Il

ZoZT

. S 9 .
Therefore, the z-intercept z7 for the tangent line is given by =1 ¢ zr = —, and the y-intercept yr
Zo

4
=1 & Yyr = —.
Yo

So as z takes on all values in (0, 3), z1 takes on all values in (3,00), and as o takes on all values in (0, 2).

is given by yoi/T

yr takes on all values in (2,00). At the point (o, yo) on the ellipse, the slope of the normal line is

1 9 o . . 9 yo . L
—————— = — == and it t — Y = —~=—(Z — xo). So the z-intercept x  for the normal line
V(@00 i and its equation is y — yo 12, (T — o). So the z-intercept v for the normal line is
. 9y0 4l‘0 5.1'0 . . .
givenby 0 — yg = Z:c_(xN — o) = Iy = B +x0 = 5 and the y-intercept y is given by
0

_ 9% — _ _ Y
YN y0_4:v0(0 o) = yn = 4 +yo = 4

So as o takes on all values in (0, 3). zx takes on all values in (0,%). and as yo takes on all values in (0, 2).

yn takes on all values in (—£,0).

. 2 .
lim sin(3 + 2)° — sin9 = f'(3) where f(z) = sin z2. Now f'(z) = (cosz?)(2z), 50 f'(3) = 6cos9.

x—0 x
(a Y If the two lines L; and L have slopes m1 and ms and angles of
inclination ¢; and ¢,. then m; = tan ¢, and my = tan @,. The
triangle in the figure shows that ¢, + o + (180° — ¢,) = 180° and so
@ = ¢, — ¢,. Therefore, using the identity for tan(z — y). we have

tan ¢, — tan ¢,
1+ tan ¢, tan ¢,

tan o = tan(¢, — ¢,) = and so

ma —my

tan a = .
14+mime

(b) (i) The parabolas intersect when z2 — (z—2)? = z=1. If y = 22, then y' = 2z, s0 the slope of the
tangenttoy =z at (1,1) is m; = 2(1) =2.Ify = (z — 2)% then y/ = 2(x — 2), so the slope of the
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16.

17.

18.

19.
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tangent to y = (x — 2)% at (1,1) is mg = 2(1 — 2) = —2. Therefore,
mz — M1 -2-2 4
tano = = — 4 S — -1(4) ~, 53° o
@ 14+ mima 1+2(-2) 3 and so a = tan (3) 53° (or 127°).

(ii) xg—yZ:3andm2—4.1:+y2+3:0imersectwhen12—4w+(x2——3)+3:0 & 2z(z—-2)=0

— 1z —0or2. but0isextraneous. If z = 2, theny = +1. Ifz® — y* = 3 then 2z — 2yy' =0 =

y =z/yandz® —4z+y*+3=0 = 2z2-4+2yy =0 = y = (2.1) the slopes are

my =2andmg = 0,50 tana = 195% = =2 = a~ 117°. At (2, —1) the slopes are m1 = —2 and

ma =0, sotana—l—Jr‘(Jg)—()O—) 2 = a~63°(@rl1l7°).

v =dpr = 2yy =4p = y =2p/y = slopeof tangent at P(z1,y1) is m1 = 2p/y:1. The slope of

FPismg = . LE e so by the formula from Problem 15(a),
1 —

yifws —p) =2 yi(m—p) _ _yi —2p(@1—p)
1+ @ppy)yifles —p)] iz —p) vz —p) + 200

tana =

4pm1 — 2px; + 2p° 2p(;D +x1)  2p
Ty —pyi +20y1 wilp+ 1) W

= slope of tangent at P = tan 3

Since 0 < ., 3 < 7. this proves that a = B.
Since ZROQ = ZOQP = 0, the triangle QOR is isosceles. so

|QR| = |RO| = z. By the Law of Cosines, z? = 22 + r? — 2rz cos 6. Hence,

1"2

2r cos ~ 2cosb

2rzcosf =1’ 50T = . Note thatasy — 01,60 — 07 (since

sin® = y/r). and hence z — — " — T Thus. as P is taken closer and closer
2cos0 2

to the z-axis. the point R approaches the midpoint of the radius AO.

f@) 1O, f@) = 10)

i f@) _ o @0y f@—fO) _, _@=0 _e=0 x=0___ 1'(0)
ath g(@) =m0 g(m) —0 =0 g(z) —g(0) ~ =—0 g(z) — 90) i g(z) —g(0)  ¢'(0)
z—0 z—0 z—0

sin(a + 2z) — 2sin(a + z) +sina
2

lim
z—0 xT
sin a cos 2z + cos a sin 2x — 2sina cos T — 2cosasinz + sina

- il—r{}) 2
— lim sina (cos 2z — 2cosz + 1) + cosa (sin 2z — 2sinx)
z—0 x2
— lim sina(2cos’z —1 —2cosz +1) + cosa (2sinz cosT — 2sin )
z—0 x2
sina (2cosz)(cosz — 1) + cosa (2sin z)(cosz — 1)
=% 2
2(cos — 1)[sinacosx + cos asin x](cosz + 1)
T 20 z2(cosz + 1)
— lim —2sin® z [sin(a + z)] _ o lim (sin.qn)2 _sin(a + T) _ —2(1)? sin(a+0) _ sna
=0 z2(cosz + 1) z—0 \ T cosz + 1 cos0+1
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20 (a) fz) =ax(z—2)(z—6) =2®> —8z2 + 122 = f'(z) = 32® — 162 + 12. The average of the first pair of
zeros is (04 2)/2 = 1. Atz = 1. the slope of the tangent line is f'(1) = —1. so an equation of the tangent line
has the form y = —1x + b. Since f(1) =5.wehave 5= —1+b = b =6 and the tangent has equation

0+6 2+6:

2 3.y=-92+18;atx =

y = —x + 6. Similarly, at x = 4,y = —4x. From the graph, we
see that each tangent line drawn at the average of two zeros intersects the graph of f at the third zero.

8

—18

(b) A CAS gives f'(z) = (z = b)(x —c) + (z — a)(z — ¢) + (z — a)(z —b) or

f'(x) = 32% — 2(a+ b+ c)z + ab + ac + be. Using the Simplify command, we get

2 Y
f’<a;—b> = — (a;b) and f(aT—‘_b> = —(aTb)(a + b — 2c), so an equation of the tangent line at

2 N2
y:_(a;b) (x_a—;b>_(a8b) (a+b—2)

To find the z-intercept, let y = 0 and use the Solve command. The resultis z = c.

Using Derive. we can begin by authoring the expression (z — a)(z — b)(x — ¢). Now load the utility file
Dif_apps. Next we author tangent (#1, z, (a + b) /2)—this is the command to find an equation of the tangent
line of the function in #1 whose independent variable is z at the z-value (a + b)/2. We then simplify that
expression and obtain the equation y = #3. The form in expression #3 makes it easy to see that the z-intercept
is the third zero, namely c. In a similar fashion we see that b is the z-intercept for the tangent line at (a + c)/2

and a is the z-intercept for the tangent line at (b+c)/2.

#1: (x - a)-(x - b)-(x - ¢) Author the function y=
] a+b
#2: TANGENT| (x - a)-(x - b)-(x - c), x, —— Tangent (#1, x, (a+Dd)/2)
2
2 2
(a - 2.a:b +b ).(c - x)
#3: 0.0s Simp(#2)
4
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21, » y=e y=4yx Let f(z) = €** and g(z) = k /= (k > 0). From the graphs of f and g.
y=3Jk we see that f will intersect g exactly once when f and g share a tangent
24 line. Thus, we must have f = gand f' = ¢’ atz = a. f(a) = g(a) =
y= X
2a __ ! / 2 k
e —=ka (1) and f'(a) = g'(a) = 2 = =
Va () and f'(a) = g'(a) 5
, k k k
0 e = . So we must have k y/a = ——= o=
‘ * iva ckva=7= = (Vay =g =
a=1 From().e*"/Y =k\/1/4 = k= 2e1/? = 2/e ~ 3.297.
22, y We see thatat z = 0. f(z) = a® = 1+ z = 1, s0if y = a” is to lie above
y = 1 + x, the two curves must just touch at (0, 1), that is. we must have
y=x+1
1 Fo=1
y=a [To see this analytically, note thata® > 1+z = a*—12z =
0 1 X z_1 r
a > 1forz > 0.s0 f'(0) = lim a1 > 1. Similarly. for z < 0,
x z—0+ T

T x

< 1.s0 f'(0) = lim g
z—0~

a*—-1>2z = < 1. Since

1 < /(0) < 1, we must have f'(0) = 1.] But f'(z) = a®Ina =
f'(0) =lna.sowehavelna=1 & a=e

Another method: The inequality certainly holds for z < —1, so considerz > —1,z # 0. Thena” > 1+ =

a>(l+a)/"forz>0 = a> lim(1+ z)'/* = e, by Equation 3.8.5. Also.a” > 1+z =

z—0

a<(l4z)/*forr <0 = a< lim (1+2)/" =e. Sosincee < a < e, wemusthavea = e.

z—0~

T 2 sin
23. y= - arctan .Letk =a+ va? — 1. Then
v Va2 -1 +a?2-1 a++va2—1+cosz

;1 2 1 cosz(k + cos x) + sin® z

v= Vaz—1 +Va?-1 1 +sin® z/(k + cos )2 (k + cosx)?
_ 1 2 kcosz + cos? & + sin® _ 1 _ 2 ) kcosz +1
T Var=1 Va2-1 (k + cosz)? + sin® T2 -1 +Vaz—1 k*+2kcosz+1
_k2—|—2k'cosw+1—2kcosx—2 _ k2 -1

VaZ — 1 (k2 +2kcosz +1) " VaZ —1(k2+2kcosz +1)

But k2 — 2a% + 2av/a® —1—1=2a(a+Va® —1) — 1 =2ak — L.sok® + 1 = 2ak. and
2(ak — 1) ak —1
k2 —1=2(ak —1). Soy = = .B
(a ) v Va? — 1 (2ak + 2kcosz)  Va®—1k (a+ cosx)

ak—1=a?+ava®—1-1=kvaz—Lsoy =1/(a+cosz).

ut




CHAPTER3 PROBLEMSPLUS O 259

24. Suppose that y = mz + c is a tangent line to the ellipse. Then it intersects the ellipse at only one point, so the

(mzx + ¢)?

2
discriminant of the equation e + =

=1 & (b*+a’>m?)z? + 2mea’zs + a%c® — a2b? = 0 must

be 0; that is,
0= (2mC(12)2 —4(b* + a®m?)(a?c® - a’b?)
=4a*®m® — 4a®0?¢* + 4a?b* — 4a*Em? +4a*b*m? = 4a®b*(a®*m? + b% — %)

Therefore, a?m? + b? — ¢2 = 0.

Now if a point («, 3) lies on the line y = mz + c. then ¢ = B — ma, so from above,

2 b2_ 2
O:a2m2+bz—(ﬁ~—ma)2:(a2—a2)m2+2aﬂm+b2—ﬁ2 & m2+a2?i2m+ s

0.

a2_a2

1 1
(a) Suppose that the two tangent lines from the point (e, B) to the ellipse have slopes m and ™ Then m and -
1

2 2 _ 2 ] 1
are roots of the equation 22 + o z+ B = 0. This implies that (z —m)(2— — | =0 <
a? — a? a? — a? m

1 1 . . . .
2% - <m + —> z+m <—) = 0, so equating the constant terms in the two quadratic equations, we get
m m

b2 122 1 .
WZ"’ = m<E> = 1.and hence b* — 82 = ¢® — 2. So (c, B) lies on the hyperbola z° — y? = o2 — p2.

(b) If the two tangent lines from the point (a, ) to the ellipse have slopes m and —l. then m and 1 are roots
m m

. . 1
of the quadratic equation. and so (z—m) (z + E) = 0. and equating the constant terms as in part (a), we get

b2—ﬁ2

a? — a2

= —1,and hence b* — 82 = o2 — 42, So the point (e, B) lies on the circle 22 + y? = ¢2 + p2.

X2+ 32 =g + p?
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% y=z'-22"-2z = ¢y = 4z° — 4z — 1. The equation of the tangent line at z = a is
y— (a* —2a*> —a) = (4a® —da—1)(z —a)ory = (4a® — 4a — 1)z + (—3a* + 2a°) and similarly for z = b.
Soifatz — aand T = b we have the same tangent line. then 4a® — 4a — 1 = 4b°> — 4b — 1 and
_ 304 + 202 = —3b* + 2b2. The first equation gives a® —b* =a—b = (a— b)(a® 4 ab+b%) = (a — b).
Assuming a # b. we have 1 = a® + ab + b2. The second equation gives 3(a* — b*) = 2(a? —b?) =
3(a® — b?)(a® +b%) = 2(a® — b?) which is true if @ = —b. Substituting into 1 = a® + ab + b* gives
l—=a?—a®+a® = a==lsothata=1andb= —1 or vice versa. Thus, the points (1, —2) and (—1,0)
have a common tangent line.

As long as there are only two such points. we are done. So we show that these are in fact the only two such

points. Suppose that a® — b2 # 0. Then 3(a* — b%)(a® + b?) = 2(a® — b?) gives 3(a® + b?) =2 ora® +b* = 2.

1 1 2
o2 2 2, 12\ _ 2 _ 1 _ 2 _ _
Thus, ab = (a +ab+b*) — (a +b)—1—§—§,sob—£.l-lence.a +W—§.509a4+1—6a2 =
1
O:9a4—6a2—|—1:(3a2—1)2.503a2~1=0 = a2:% = bzzm:%:az.contradictingour

assumption that a? # b2

26. Suppose that the normal lines at the three points (al, af). (az, a%), and (ag, a%) intersect at a common point. Now
if one of the a; is O (suppose a1 = 0) then by symmetry a2 = —as, s0 a1 + as + az = 0. So we can assume that

none of the a; is 0.

The slope of the tangent line at (af, a,z) is 2a;. so the slope of the normal line is 54 and its equation is

2

y—al= —QL (z — ;). We solve for the z-coordinate of the intersection of the normal lines from (a1, a?)
ai
and (a2.a3): y=ai— L(z—m) =a} - —1—(a:—a2) =
2a, 2as

T _1___1_ :ag_a% = @~ g2 :(—al—az)(al—kag) o 1= —2a1a2(a1 +a2) ().
2a2  2a1 2a10a2

Similarly. solving for the z-coordinate of the intersections of the normal lines from (al, a%) and (as, a%) gives
¢ = —2aa3(ar +as) (1)
Equating () and (1) gives az(a1 + az2) = as(ar +a3) & ai(az —as) = a2 — a2 = —(az +as)(a2 —as)

& a1=—(a2+a3) & art+ataz=0.

21.

Because of the periodic nature of the lattice points, it suffices to consider the points in the 5 x 2 grid shown. We can

see that the minimum value of 7 occurs when there is a line with slope % which touches the circle centered at (3,1)
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and the circles centered at (0, 0) and (5. 2). To find P. the point at which the line is tangent to the circle at (0,0).

we simultaneously solve 2> + 4> = r’andy = —3z = 22+ B2 —p? o 2o Arr o
x = % Ty = —\/—52_9— 7. To find Q. we either use symmetry or solve (z — 3)2 4 (y — 1)? =2 and

y—1=—3(z—3). Asabove. we get z — 3 — F5 7Y =1+ 2= 7. Now the slope of the line PQ is 250

1+—5—r—(——5—r) 1412, o
mpg = —2 B L 29“0’":; = 5v29+50r =6v20 -8 o
3—ET—‘ET 3—\/—5—57‘ 3v29 —4r

88r=+v29 & r= 3%. So the minimum value of r for which any line with slope % intersects circles with

radius 7 centered at the lattice points on the plane is r = 3% =~ 0.093.

Assume the axes of the cone and the cylinder are parallel. Let H denote
the initial height of the water. When the cone has been dropping for ¢
seconds, the water level has risen 2 meters, so the tip of the cone is

water
level Z + 1t meters below the water line. We want to find dz /dt when

x +1t = h (when the cone is completely submerged). Using similar

triangles, —— =~ o —z(a?-f-t)
gles, z+t & 1=7 .
volume of water _ original volume volume of submerged
and cone at time ¢ N of water part of cone
TR*(H + z) = TR*H + smri(z + 1)
2
r
TR?H + Rz = TR’H +- %ﬂ'ﬁ(l‘ +1t)®
3h2R%y = r(z +1t)
Differentiating implicitly with respect to ¢ gives us
dz dx dt
3h2R2 = 2 2 i ) 2 ot
=7 3@+t o T3+ =
dz _ r?(z +t)?
dt ~ h2R2 — r2(z +t)2
dz _ r2h? o
dt|, . ,_, h2R®—r2p2 ~ R2_,2

- r . .
Thus, the water level is rising at a rate of 2 cm/s at the instant the cone is completely submerged.
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29.

O CHAPTER3 PROBLEMS PLUS
By similar triangles. L l—hG = r= % The volume of the cone is
5h\*, 257 dv 251, dh
V=1lrr?h=1n( 2 350 2 = 2 p2 T2 Now th
37T 5™\ 16 768h o = e & Now the rate of
16
change of the volume is also equal to the difference of what is being added
k2 2 cma/min) and what is oozing out (k7rl, where mrl is the area of the cone and k
. . av
is a proportionality constant). Thus, rri 2 — knrl.
d dh 5(10 25 l 10
Equating the two expressions for d—‘t/ and substituting h = 10, i =-03.r= —(162 =3 and Tom =16
125km /281 750 ..
& 1= 2/281. we get 27 (10)*(~0.3) =2-kr2. 2v28l & 5 24 =2+ 25(7;' Solving for k

givesus k = 256 1 37om 375m _To maintain a certain height, the rate of oozing, k7rl, must equal the rate of the liquid

2507 v/ 2507 v/281

256 + 3757 @ 51/281 256 + 375w

- = ~ 11.204 cm®/min.
2507 V281 8 8 128

. . dv
being poured in; that is, - = 0. knrl =





